T.0. 33-~DF-3&-12-11

DISTRIBUTION STATEMENT — Distribution authorized to U.S. Gov-
ernment agencies only for administrative or operational use (effective
date is date of this manual). Other requests for this document must be
referred to San Antonio ALC/MMEDT, Kelly AFB, TX 78241-5000.

THIS MATERIAL MAY BE REPRODUCED BY OR FOR THE U.S. GOV-
ERNMENT PURSUANT TO THE COPYRIGHT LICENSE UNDER THE
(DFAR) CLAUSE AT 52.227-7013 (15 MAY 1987).

HANDLING AND DESTRUCTION NOTICE — Comply with distribution
statement and destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

Form No. A260 7/89

97100 Series

Applications
Manual

P/N 813840

FEBRUARY 1988 FLU KE

©1988, John Fluke Mfg. Co., Inc.

All rights reserved. Litho in U.S.A.

LIMITED WARRANTY

John Fluke Mfg. Co., Inc. (Fluke) warrants your 9100/9105A to be free from
defects in material and workmanship under normal use and service for 90 days
from the date of shipment. Software and firmware products are provided “AS
IS.” We do not warrant that software or firmware products will be error free,
operated without interruption or that all errors will be corrected. This warranty
extends to you if you are the original purchaser and does not apply to fuses,
batteries or any product which, in our sole opinion, has been subjectto misuse,
alteration or abnormal conditions of operation or handling.

To obtain warranty service, contact a Fluke Service Center or send the
product, with the description of the difficulty, postage prepaid, to the nearest
Fiuke Service Center. Fluke assumes no risk for damage in transit.

Fluke will, at our option, repair or replace the defective product free of
charge. However, if we determine that the failure was caused by misuse,
alteration, or abnormal condition of operation or handling, you will be billed for
the repair. The repaired product will be returned to you, transportation prepaid.

THISWARRANTY IS EXCLUSIVEAND IS IN LIEU OF ALL OTHER WARRAN-
TIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE OR USE. FLUKE WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR
LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

9100 Series Applications Manual

by
Douglas Hazelton

John Fluke Mfg. Co., Inc.
Evereti, Washington

Acknowledgements

I would like to express my appreciation to Marshall Scott for the
original concept of this manual and for his encouragement and
support through the writing process. In addition, I would like to
thank Pat Donahoo, Bob Cuckler, Marshall Scott, and Tony
Vannelli for the "Considerations for Testing and Troubleshooting”
material presented in Section 4. I am also appreciative of the
assistance of Frank Tomlinson in developing the TL/1 programs for
the Demo/Trainer UUT and to Greg Sheahen and George Hong for
their valuable suggestions concerning the user interface graphics.
And finally, I would like to thank Ted Thwing for his editorial
suggestions and for coordinating the development of this manual.

Section Title Page
WHere am 12.... .ottt e xvil
1. INtFOUCTION ... e 1-1
1.1. ORGANIZATION OF THIS MANUAL.......ccccoiiranrnnennee. 1-1
1.2 PREPARING FOR TESTING AND
TROUBLESHOOTING........coeeeeee et 1-2
1.3. WHERE TOBEGIN......cccoiiiieee e 1-5
2, Overview of Testing and Troubleshooting............c..ccccocenineen. 241
2.1. EMULATIVE TESTING......cco oo 2-2
2.2. NODE CHARACTERIZATION........cccoeveviirmrreeenecnricenienne 2-6
23. STIMULUS AND MEASUREMENT CAPABILITIES........ 2-7
2.3.1. Pod Capabilities.......ccccceerrieriirnie et 29
2.3.2. Probe Capabilities (With The Clock Module)............... 29
2:3.3. I/O Module Capabilities..........ccccerverrrriecieeeniensieeeneenne 2-10
2.4. TESTING AND TROUBLESHOQOTING WITH
THE 9100A/B105A.......ceeeeere et 2-11
3. Developing Procedures and Programs................._ 31
3.1. UNDERSTANDING THE UUT....ccooiiicccieenceeene 3-1
3.2. PARTITIONING THE UUT ... 3-1

Section

Title Page
3.2.1. An Example of Partitioning............oceccecnnnnininieience 3-2
3.2.2. The Advantage of Partitioning.........c.cccccevveveee e, 3-6
3.8. PROGRAM DEVELOPMENT SEQUENCE.................... 3-6
3.4. STIMULUS PROGRAMS AND LEARNED
RESPONSES. ... esrenetesee e s 3-8
3.4.1. Rules for Stimulus Programs...........ccceceeeveevenvecennne. 3-10
3.4.2. The Flow of Stimulus Across the UUT...........ccccoeeeee. 3-11
3.4.3. Stimulus Program Planning..........cceccceeeeveevnieeeceecennnnn. 3-12
3.44. Suggestions about Stimulus Programs...................... 3-16
3.5. FUNCTIONAL TESTS.....oooiireeererceere e 3-21
3.5.1. Programmed Functional Tests.........cecceecnnnnnecinnenne 3-24
3.5.2. Programmed Functional Test Examples.................... 3-26
3.5.3. Keystroke Functional Tests.........cceevvveenennenneniinnenn 3-27
Functional Block Test and Troubleshooting Examples............ 4-1
41. MICROPROCESSOR BUS FUNCTIONAL BLOCK......... 4-3
411, Test Access to the Microprocessor Bus.............c........ 4-3
412, Considerations for Testing and Troubleshooting........ 4-5
413, Microprocessor Bus Examplecccceeeviiveninienns 4-10
41.4. Keystroke Functional Test...........ccccvvevrvcnneencnninennnns 410
4.15. Programmed Functional Test........cccccoeeceeveeveierene, 4-14
4.1.6. Stimulus Programs and Responses............ccocevcveunee. 417
41.7. Summary of Complete Solution for
Microprocessor BUS.........oco e iin e 4-31
42, ROM FUNCTIONAL BLOCK.......ccoceiiririe e, 4-33
421, Introduction t0 ROM........cconvvnrcinnnnnenienee s 4-33
422. Considerations for Testing and Troubleshooting........ 4-33
423, ROM EXa@mple.......covereeeriemrneeeeeneersesnnennseeeseeseeeseeeeens 4-39
4.24. Keystroke Functional Test........c.ccoovinnnneiceccinnenn. 4-39
425, Programmed Functional Test.........cccevceevineeecccennnenn. 4-44
4.2.6. Stimulus Programs and Responses.........ccceceeevevueenee. 4-46
4217. Summary of Complete Solution for ROM................... 4-57
43. RAM FUNCTIONAL BLOCK......ccoiieereeecceeee e 4-59
4.3.1. Introduction 10 RAM ... 4-59
4.3.2. Considerations for Testing and Troubleshooting........ 4-59
4.3.3. RAM EXamPle.......ccciviveirceeeiiiininrere e s 4-63
434. Keystroke Functional Test............ccccooivnininvinieninnns 4-63
4.35. Programmed Functional Test.........cccooovevvvivn e 4-66

Section

4.3.6.
43.7.

4.4.

4.41.
4.4.2.
4.43.
444,
4.45.
4.4.6.
447.

4.5.

451.
452,
453.
454,
455.
4.56.
457.

4.6.

46.1.
4.6.2.
4.6.3.
464.
46.5.
4.6.6.
486.7.

4.7.

4.71.
4.7.2.
4.7.3.
4.7.4.
4.7.5.
4.7.6.
4.7.7.

Title Page
Stimulus Programs and ResSponses.........ccoecevveeeeeeenne 4-67
Summary of Complete Solution for RAM.................... 4-74
DYNAMIC RAM TIMING FUNCTIONAL BLOCK............ 4-75
Introduction to Dynamic RAM Timing Circuits............ 4-75
Considerations for Testing and Troubleshooting........ 4-75
Dynamic RAM Timing Circuit Example...........ccoeueuuee 4-79
Keystroke Functional Test..........ccccmreecniniiiniinnnnns 4-83
Programmed Functional Test........cccovecernrniiiniinnenns 4-88
Stimulus Programs and Responses.........cccccecvviiene 4-88
Summary of Complete Solution for Dynamic
RAM TiMiNg......ccovveermre et e seeeneeceeeneenees 4-113
PARALLEL INPUT/QUTPUT FUNCTIONAL BLOCK...... 4-115
Introduction to Parallel 1/O...........ccoo i 4-115
Considerations for Testing and Troubleshooting........ 4-115
Parallel 1/O Example.........cccveeeccnrnennininensnninneenens 4-118
Keystroke Functional Test.........cccoreiiiviieiniins 4-118
Programmed Functional Test.........c..ccecviniiiiiiiiiiinns 4-124
Stimulus Programs and Responses..........ccccecvveiiuennns 4-126
Summary of Complete Solution for Parallel I/O........... 4-149
SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK............ 4-151
Introduction to Serial VO......c.cccoovvrcvniniiiiiici, 4-151
Considerations for Testing and Troubleshooting........ 4-151
Serial I/O EXample.......covvveecereereenennrcenir e 4-155
Keystroke Functional Test.........cccovvvviinicicininn, 4-156
Programmed Functional Test.........ccccciiiiiniinnnne. 4-160
Stimulus Programs and ReSponses.......cc.ooeeevenieivinne 4-163
Summary of Complete Solution for Serial /O............. 4-176
VIDEO OUTPUT FUNCTIONAL BLOCK.......cc.coovrnniinenn 4-177
Introduction to Video Output Circuits.........ccocevneenes 4177
Considerations for Testing and Troubleshooting........ 4177
Video Output Circuit Example...........ccccovnnniniinns 4-180
Keystroke Functional Test........cccevnvvivirnnennninns 4-181
Programmed Functional Test.............ceninininics 4-186
Stimulus Programs and Responses...........ccceveeneeann 4-187

Summary of Complete Solution for Video Output...... 4-202

Section

Vi

4.8.

4.8.1.
4.8.2.
4.83.
484,
485.
4.8.6.
48.7.

4.9.

491.
49.2.
4.93.
4.94.
495,
4.9.6.
49.7.

4.10.

4.10.1.
4.10.2.
4.10.3.
4.10.4.
4.105.

»
—t ok
So
No

rErBABASS
-—L—A—L—L—A_A'.-L_L

S
-
N

4.12.1.
4.12.2.
4.12.3.
4.12.4.

—t ek bk b h md eh A
Nounswp=

Title Page
VIDEO CONTROL FUNCTIONAL BLOCK............c.cco...... 4-203
Introduction to Video Control Circuits.............ccccvenene. 4-203
Considerations for Testing and Troubleshooting........ 4-205
Video Control Circuit Example...........c.ccoceeeviiievenennnns 4-206
Keystroke Functional Test........cccccceeeievenireenee, 4-208
Programmed Functional Test..........cccoccveeeine e, 4-216
Stimulus Programs and Responses........c.cccccveeenenee. 4-216
Summary of Complete Solution for Video Control...... 4-229
VIDEO RAM FUNCTIONAL BLOCK.......ccceeerrrrerrceenen, 4-231
Introduction to Video RAM.........ccccvevvvireececieceea, 4-231
Considerations for Testing and Troubleshooting........ 4-231
Video RAM Circuit Example.......ccccceeevvnnvvinevennnnen. 4-233
Keystroke Functional Test...........cccceeeveeveeciivicinecenee, 4-234
Programmed Functional Test.........ccoceevvvvvrvncvninnns 4-238
Stimulus Programs and Responses..........ccccccceeneenee. 4-238
Summary of Complete Solution for Video RAM.......... 4-242
BUS BUFFER FUNCTIONAL BLOCK......cccoceoveirrcne. 4-243
Buses and Bus Buffers........cccccovereecciincinnniiennene. 4-243
Considerations for Testing and Troubleshooting........ 4-243
Bus Buffer Example......cccooee e 4-250
Keystroke Functional Test........ccceovevceeecieiiennneenenee, 4-251
Programmed Functional Test.........ccccoviiiiinninienne 4-262
Stimulus Programs and Responses...........ceeevveeennene 4-263
Summary of Complete Solution for Bus Buffer........... 4-272
ADDRESS DECODE FUNCTIONAL BLOCK.................. 4-273
Introduction to Address Decode Circuits..................... 4-273
Considerations for Testing and Troubleshooting........ 4-273
Address Decode Circuit Example.....ccccoeveericceeeeen. 4-276
Keystroke Functional Test.........cccceevenveeninscnee e 4-277
Programmed Functional Test..........ccoovvvevcieccninnen. 4-282
Stimulus Programs and Responses...........ccevveenieenne 4-283
Summary of Complete Solution for
Address DeCOde.........cccomeienieniminiccnns s 4-289
CLOCK AND RESET FUNCTIONAL BLOCK.................. 4-291
Introduction to Clock and Reset Circuits.........c.ccce..e... 4-291
Considerations for Testing and Troubleshooting........ 4-291
Clock and Reset Example.........ccovveecrciininecncnn 4-293
Keystroke Functional Test......c..eeveivvieiiininicceeee 4-294

Section Title Page
4.125. Programmed Functional Test.........ccccccviineneccnnnen 4-300
4.12.6. Stimulus Programs and Responses........cccccceeceueennen. 4-301
4127. Summary of Complete Solution for Clock and Reset.. 4-312
4.13. INTERRUPT CIRCUIT FUNCTIONAL BLOCK................ 4-313
4131, Introduction to Interrupt Circuits..........cccccecceneennnnn 4-313
4.13.2. Considerations for Testing and Troubleshooting........ 4-313
413.3. Interrupt Circuit EXample........cccocvevniniicenienie s 4-316
4.13.4. Keystroke Functional Test.........ccccomnnievicv e, 4-316
4135. Programmed Functional Test.........coovieeiiieinennenns 4-322
4.13.6. Stimulus Programs and Responses..........cooceeevnenen. 4-322
4.13.7. Summary of Complete Solution for Interrupt Circuit.... 4-329
4.14. READY CIRCUIT FUNCTIONAL BLOCK.......ccccevreernnnn. 4-331
4.14.1. Introduction to Ready Circuits.........c.ccevvnvnncicnens 4-331
4.14.2. Considerations for Testing and Troubleshooting........ 4-331
4.143. Ready Circuit Example.........cccceevveveereieenieenieesee e, 4-334
4.14.4. Keystroke Functional Test...........cccceevmmnimnennncien 4-335
4.14.6. Programmed Functional Test.........ccccoiviinnn 4-348
4147. Stimulus Programs and Responses........c.cccoeveeeeeneen. 4-349
414 8. Summary of Complete Solution for Ready Circuit....... 4-378
415, OTHER FUNCTIONAL BLOCKS AND CIRCUITS.......... 4-379
4151. Watchdog TimMerS.........veevvvceeereeeieeeeee e 4-379
4152, FOrCiNg LiNEScoi e e 4-379
4.153. Breaking Feedback LOOPS........cccecveeeiinrnc e 4-380
4154. Visual and Acoustic Interfaces.........ccoooecececcennnnnnen. 4-380
4155, In-Circuit Component TestS.......cccovveirccenrenneennnnnnne 4-381

5. UUT Go/No-Go Functional Tests.........c..cocccevrnivinniinniiinnnnn, 5-1
5.1. PROGRAMMED GO/NO-GO FUNCTIONAL TESTING.. 5-1
5.2. CREATING A PROGRAMMED GO/NO-GO

FUNCTIONAL TEST ..ot i 5-1
5.3. EVALUATING TEST EFFECTIVENESS..........cccoeeeeee. 5-3
5.4, EXECUTING UUT SELF-TESTS......cccooiiiiicreeeee 5-7
5.5. EXECUTING DOWNLOADED MACHINE CODE............ 5-8

vii

Section Title Page

6. Identifying a Faulty Functional BloCKk............c..ccccevvvvvviinnennn, 6-1
6.1. STRATEGY OF DIAGNOSTIC PROGRAMS.................. 6-3
6.2. IMPLEMENTING THE STRATEGY FOR

DIAGNOSTIC PROGRAMS..........ccooevirviecie et 6-6
6.3. DIAGNOSIS USING FAULT CONDITION HANDLERS.. 6-8
6.3.1. What are Fault Condition Handlers?........................... 6-8
6.3.2. Using Fault Condition Handlers...........cccecvveveeevnnee.. 6-9
6.3.3. A Diagnostic Test Example.........cccvvvvvernrrneenennnnen 6-9
6.4, DIAGNOSTIC PROGRAM FOR THE

DEMO/TRAINER UUT....ceiiicireeeereee s 6-11
6.5. FUNCTIONAL BLOCK TESTS FOR THE

DEMO/TRAINER UUT DIAGNOSTIC PROGRAM.......... 6-17

7. TroubleShOoting...........ccccoviiicieiveeecer e 7-1
7.1. UNGUIDED FAULT ISOLATION (UFD)....cccoeeeernnee. 7-1
7.2. GUIDED FAULT ISOLATION (GF)....covcvririeciieieee, 7-2
7.3. STIMULUS PROGRAMS........coeireirrennrrennrereese e 7-2
7.4, STIMULUS PROGRAM RESPONSES..........cccocvvveeenee. 7-4
7.41. Learning Responses From a Known-Good UUT........ 7-4
7.42. CRC Signatures.....ccccoeeeeeeeeeceee e 7-5
7.4.3. Other Characterizations.........ccccccvvveenvirvnvven v 7-7
7.4.4. Calibration of the I/O Module and Probe...................... 7-8
7.45. Adjusting Sync Timing........ccccovveiiieeeieecee e 79
7.5. THE UUT DESCRIPTION......cce et 7-11
7.51. Reference Designator List (REFLIST).......cccoccenenee 7-11
7.5.2. Part Library (Part Descriptions)........ccceceeeeeeevieeciienen. 7-12
7.5.3. Node List (Net List or Wire List).........ccccoeevvevervenrennenne 7-12
754 Bus-Master Pins in @ Node List.........ccccovvvieeniincnnnen. 7-13
7.55. Choice of Backtracing Path..........ccoccoonvrnninine 7-14
7.6. SUMMARY OF GFI COVERAGE..........ccoooiiiricieeeee 7-17
7.7. FAULT CONDITION EXERCISERS........cccoccvvevvneiinnnanns 7-23
7.8. REPAIR AFTER TROUBLESHOOTING........cccccvvvreinrae 7-24

8. GlOSSAMY.....c.oiiec e 8-1

viii

Section Title Page
Appendices

A. Demo/Trainer UUT Reflist...........ccooooeiiiiiii A-1
B. Demo/Trainer UUT Nodelist.............ccccoeviiiiiiiniiiiis B-1
C. Subprograms for Functional Test and Stimulus Programs..... C-1
D. Demo/Trainer UUT Schematics.............cocoimnivimvnn e D-1
Index

(This page is intentionally blank.)

Figures

Figure

-k
[l
-t

NN
WN =

CRNOGALRH

bbb WWWWWWwWwwow

Title Page
Recommended Programming Sequence............cccooreecrncnnienneens 1-4
Testing, Troubleshooting, and Repair............ccvvvvviiiiniiciiinnen, 2-3
Emulative Testing With the 9100A/3105A.........cocccvivenriiieree 2-5
9100A/9105A Stimulus and Measurement Capability................ 2-8
Demo/Trainer UUT......ccooiieieii e e 3-3
Demo/Trainer UUT Functional BIoCkS..........ccccoovivimniiniiniinnncnn, 3-5
Building-Block Programming..........cccceerrnmmniceeenmemeneesniensenns 3-7
Functional Test for Nodes (Level 1)........cccocviiiiinniniicienns 39
Example of Stimulus Program Planning Figure............ccccoei. 3-15
Parts of a Stimulus Program..........cccoeeocirveenneccceeceeerrerneenns 3-18
Functional Tests for Functional Blocks (Level 2).........ccccoines 3-22
Functional Test Elements..........cccoommreccninniiniciiin, 3-23
Example of Keystroke Functional Test Figure...........cccveiiiins 3-29
Conditions Reported by the BUS TEST.........ccccoiiivnivinnn 4-6
Microprocessor Bus Functional Test.........cccccvvmnininvivniicnniees 4-13
Microprocessor Bus Stimulus Program Planning............c...c....... 4-19
Stimulus Program (ADDR_OUT}...coccovniiiiiiiicccrie e 4-20
Response File (ADDR_OUT)...cccceiimiircrcrreiirienic e 4-22
Stimulus Program {DATA_OUT).....cccccmreriimiiiiniiceincienniiens 4-24
Response File (DATA_OUT)...ccooriniiiiniiin it 4-26
Stimulus Program (CTRL_OUT). 4-28
Response File (CTRL_OUTT) .ccoovirriiiiriin et 4-30

xi

Figure

e O I G LY
NOoOhWN=AO

RN
QO

b

Xii

Title Page

Typical ROM BIOCKcocviieeiiie et e e ee e 4-34
Conditions Reported by ROM Test........cccooiviiiiinciiiicie e 4-36
ROM FUNCLIONal TESL......ccoiireeiereieceiriie e 4-43
ROM Stimulus Program Planning.........cc.ccoecneerveccnninniensiencennne 4-49
Stimulus Program (ROMO_DATA).......ccccvvmnerninrcecnenrenreenees 4-50
Response File (ROMO_DATA)......ccceeriverirene e 4-52
Stimulus Program (ROM1_DATA).......cocecmminneniee e 4-53
Response File (ROM1T_DATA)......ccocivrircniireiseinnecrceceeneeseaeanens 4-55
Typical RAM BIOCK.........cooooee e e 4-60
RAM Test Failure Information............ccoccnvmneniinencicee e 4-62
RAM Functional TeSt.........cccvrviiinieiniiicic et e 4-65
RAM Stimulus Program Planning..........ccccoveecccceemmmnnnneeenennces 4-69
Stimulus Program (RAM_DATA)......ccceroureiereernrinin e seeeseen e 4-70
Response File (RAM_DATA).......ccovuimienrreeimrenrer e esceeeeeesinees 4-72
inititalization Program (RAM_FILL)........coovcciniiniieiii 4-73
Dynamic RAM Read CYCIES......cccccovvrmevcrie e 4-76
Dynamic RAM Read/Write TIMiNg........cccccvinviiiiniiniinniiinn, 4-80
RAM Refresh Timing.........cocomrvcciviiiiinmniii e, 4-82
Dynamic RAM Timing Functional Test...........cccceiiiiininncnns 4-87
Dynamic RAM Timing Stimulus Program Planning...........cc..e.... 4-91
Stimulus Program (CAS_STIM).....cccevverninccnriiinii i 492
Response File (CAS_STIM) ...coceeeevmmecccmn e 4-94
Stimulus Program (RAS_STIM).....cooeiiiiiicieeenrene e 4-95
Response File (RAS_STIM) ..o, 4-97
Stimulus Program (RAMSELECT1)....cccoinininiiinee e 4-98
Response File (RAMSELECTT).....cccccviiiiiceinee e 4-100
Stimulus Program (RAMSELECT2).......ccccovevimninicccreccie 4-101
Response File (RAMSELECT2)......c.ccccvveeniecniinee s 4-103
Stimulus Program (REFSH_ADDR).......c.ccccoecvivnnniiiininnncnnn, 4-104
Response File (REFSH_ADDR)......ccooriciivein s 4-106
Stimulus Program (REFSH_TIME)........ccccccnmmnnnniiiiiinene 4-107
Response File (REFSH_TIME)........ccocivniriimnr e 4-109
Stimulus Program (REFSH_US6).........cccooeconiiiiiciinen 4-110
Response File (REFSH_U56)ccccvvmmiiiiiini e 4-112
Parallel /0 Functional Test (Part A).......ccccoovevvvirinniniiiininns 4-121
Parallel /O Functional Test (Part B)........ccoconienccinnnniininenee 4-123
Parallel I/O Stimulus Program Planning........cccooeeeecervneniiniinnen 4-129
Stimulus Program (KEY_1).cccovei e 4-130
Response File (KEY_1)..co e 4-132

4-86:
4-87:

Title Page
Stimulus Program (KEY_2)......cccceeiveviierecreeee e 4-133
Response File (KEY_2).....coccioreccirnini i, 4-135
Stimulus Program (KEY_3).....ccccoveinniinecirne e 4-136
Response File (KEY_3).....ccoovivoriieeeeeierceeciceee s e 4-138
Stimulus Program (KEY_4)......c.evveeeeninneecinere e 4-139
Response File (KEY_4)........cooveeevenieinececrccnene et 4141
Stimulus Program (PIA_DATA)........ceiimerercerree i, 4-142
Response File (PIA_DATA).......coci e 4-144
Stimulus Program (PIA_LEDS)......c.coceriecenieninnierc e 4-145
Response File (PIA_LEDS)c.ccccocieienere i 4-146
Initialization Program (PIA_INIT).......ccooiniriniine i 4-148
Typical Serial /0 Port, With Support Circuitry...........ccccovevnnn 4-152
Serial /O Functional Tesh.....vveeevrvinemeccenieeeccece e 4-159
Serial /0O Stimulus Program Planning..........cccocvevvvccnviiiininnnnns 4-165
Stimulus Program (RS232_DATA).....ccccoccevrrnemcrineeser e 4-166
Response File (RS232_DATA).....cccrvercmr e 4-168
Stimulus Program (RS232_LVL).......ccoccrvmevincceiecneeeeecee 4-169
Response File (RS232_LVL)...cccviiivecieesirieccecenriee e 4-171
Stimulus Program (TTL_LVL) oo 4-172
Response File (TTL_LVL)..cooceiccc e 4-174
Initialization Program (RS232_INIT).....coccervvmniecicniiniiniin 4-175
Typical Video Controller CirCuit...........ccooeeeeiveenienniece e 4-178
Video Output Functional Test.........cccovvieiiiiiniiecee i 4-185
Video Output Stimulus Program Planning...........cccccoveeee i, 4-189
Stimulus Program (VIDEO_FREQ)........ccccvvvcenivicciisiiincn 4-190
Response File (VIDEO_FREQ)......coceccccermmricniiienniniieeeee 4-191
Stimulus Program (VIDEQ_OUT)...c.coveceiiieeeececee e 4-192
Response File (VIDEOQ_OUT)ccoviireiiiiniie i iceneeeriesiees 4-194
Stimulus Program (VIDEO_SCAN).......cocvevinmrriiiicniisenninns 4-195
Response File (VIDEO_SCAN)......cccccomrrrevriiiiiin e 4-197
Initialization Program (VIDEO_INIT)...cccoomriicniiiiiin, 4-199
Initialization Program (VIDEQO_FILT).cccconininiiiceeecini 4-200
Initialization Program (VIDEO_FIL2).........ccceenniivnnivivvrmnaennne. 4-201
Video Display Controller Timing..........ccceoevveriiiiiniiiiieciennens 4-204
Video Control Functional Block Timing..........ccccevinnniniiinninen. 4-207
Video Control Functional Test (Part A)........ccccocinniiiiiniiinn 4-211
Video Control Functional Test (Part B)........c.cccomviiniiiiiciinnnns 4-213
Video Control Functional Test (Pant C).......cccceninniiinin e, 4-215
Video Control Stimulus Program Planning..........cccceevveveeccenins 4-219

xiii

Figure Title Page
4-88: Stimulus Program (VIDEO_DATA)......ccccccoeeeeveeeeeeeeee e 4-220
4-89: Response File (VIDEO_DATA)........comereeieeeeeeeeceeceetere e 4-222
4-90: Stimulus Program (VIDEO_RDY).....ccc.coeveerermieeececeie e 4-223
4-91: Response File (VIDEOQO_RDY)...cooovcouiiiiieeeeeeeeeeee e 4-224
4-92: Stimulus Program (LEVELS).......cccocovviit e 4-226
4-93: Response File (LEVELS)......oooieeeeeeeeeeeeeeeeeeteeee e 4-227
4-94: Video RAM Functional Test.......ccc.ccoeemeuiieeeiieiciece e 4-237
4-95: Video RAM Stimulus Program Planning..............cccccoevvevevieeennnc.. 4-241
4-96: Bus Buffer Functional Test (Part A)........ccoocoeiieeeiiicicceeeeene 4-255
4-97: Bus Buffer Functional Test (Part B)...........ccccoveveeeiveeiviceeene. 4-257
4-98: Bus Buffer Functional Test (Part C).......ccccoevvvivevcveviiiiieee 4-259
4-99: Bus Buffer Functional Test (Part D).......c.ooevvvveevniniiieee e 4-261
4-100: Bus Buffer Stimulus Program Planning...........ccceeeevevvivcevennnnnn 4-265
4-101: Stimulus Program (CTRL_OUT2)........ccovvvviveirirecvceeeeeeee e, 4-266
4-102: Response File (CTRL_OUT2)......ccoevvmvieeeereeeeeeeeeeeeeevee e 4-268
4-103: Stimulus Program (CTRL_OUT3).....cccccceeeerevinecrierieeeise s 4-269
4-104: Response File (CTRL_OUT3)....ccvvieeeeeeeeeeeeeceee e 4-271
4-105: Typical Address Decode Functional Block.............cccoevveveeneee.. 4-274
4-106: Address Decode Functional Test.........cccceveereneeceecececeecreeenenns 4-281
4-107: Address Decode Stimulus Program Planning..........cccccvccveeunnee. 4-285
4-108: Stimulus Program (DECODE).........ccccoveiuiveiieiiesiieciree e 4-286
4-109: Response File (DECODE).........cccovvvviviieseesinssieeeeeieeeveererenn 4-288
4-110: Clock and Reset Functional Test (Part A).........ccccoeeeveeciienennn, 4-297
4-111: Clock and Reset Functional Test (Part B)........ccccoeevveieieeenne. 4-299
4-112: Clock and Reset Stimulus Program Planning............ccccceeeeuen.. 4-303
4-113: Stimulus Program (RESET_HIGH).......cccccveeececnrecn e, 4-304
4-114: Response File (RESET_HIGH).........ccceiierieeececeeceeee e 4-306
4-115: Stimulus Program (RESET_LOW).......ooeecerccicceecee e 4-307
4-116: Response File (RESET_LOW) ..ol 4-309
4-117: Stimulus Program (FREQUENCY)........cccovveieiiniererreeececieee 4-310
4-118: Response File (FREQUENCY)......ccooivvvvvvmrverernceseesirein e e 4-311
4-119: Typical Interrupt CirCU..........coevie e 4-314
4-120: Interrupt Circuit Functional Test........coooece e 4-321
4-121: Interrupt Circuit Stimulus Program Planning..........c..cccocevvveennnn. 4-325
4-122: Stimulus Program (INTERRUPT)........cccovmveeirccr e, 4-326
4-123: Response File (INTERRUPT)......cceeoiviicieeeeeecee e, 4-328

Xiv

Figure

4-124:
4-125:
4-126:
4-127:
4-128:
4-129:
4-130:
4-131:
4-132:
4-133:
4-134:
4-135:
4-136:
4-137:
4-138:
4-139:
4-140:;
4-141:

1 1 1 1
bl e

NN NNN o2 o) oo
WM =

Ohdra

Title Page
Typical Ready CirCUIt.........cccooeveeeer v 4-332
Ready Circuit Functional Test (Part A)........cccocvveneneieceecinnes 4-341
Ready Circuit Functional Test (Part B)........ccccccvevvrinevvvnenennen 4-343
Ready Circuit Functional Test (Part C)........cccovvevcceineiniincieniee 4-345
Ready Circuit Functional Test (Part D)........ccccveecevenennrenenin 4-347
Ready Circuit Stimulus Program Planning...........cccccooevvenvennennn. 4-353
Stimulus Program (READY_1)......cccoiiirieeert e 4-354
Response File (READY _1)..ccci oo veree e 4-357
Stimulus Program (READY_2)......c.oocceiiiiiniee e 4-358
Response File (READY_2)........cccovirnrirnieieeeene e 4-361
Stimulus Program (READY_3).....cccveirerereeeeeer e 4-362
Response File (READY_3).....coo it 4-365
Stimulus Program (READY_4)........ccccimiiiiieeee e 4-366
Response-File (READY_4).....ccccirreiecimncecceenerere e 4-369
Stimulus Program (READY_5)......cccooiiiiiiecciien e 4-370
Response File (READY_5)...cccceeuiriiieiiene e e 4-373
Stimulus Program (READY_6)........cccoureveermireieeecccrceennscrrsneens 4-374
Response File (READY_B).....ccccoiirriiiiiiieiccris s 4-377
UUT Go/No-Go Functional Testing (Level 3)........ccccceeceniinnen. 5-2
GO/NO-GO TESt SEQUENCE.....eeverreerrerreeeceereereeseaeereeeseeeseeesee s 5-6
Demo/Trainer UUT GO/NO-GO TeSL....cooceeceeriiiiiiicceier 5-7
Go/No-Go Test for Demo/Trainer UUT ..., 5-8
Diagnostic Programs (Level 4)...........coovvviiciiiiiiniiiiee, 6-2
Inputs to Functional BIOCKS...........cocccovieiiiciiiiiiincen e 6-4
Identifying a Faulty Functional BIocK.........c.ooevire i, 6-7
Testing for Start and Stop Stability............cocieveiivicieee 7-6
Synchronization-Pulse Delay Mechanism..............cccccceii 7-10
Direction-Control EXample...........ccovveeeccmmmmmnneiecs i 7-15
Statistical Summary Display fora UUT.........icoooiiiiinii i 7-20
Pin Coverage Display for a UUT.......ccccomminnciiiiiiiiiieee, 7-22

Xv

(This page is intentionally blank.)

XVi

Getting
Started

Automated
Operations
Manual

Technical
User's
Manual

Applications
Manual

Programmer's
Manual

TL/1
Reference
Manual

Where AmI?

A description of the parts of the
9100A/9105A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 9100A/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to design test or troubleshooting
procedures for your Unit Under Test
(UUT).

How to use the programming station
with the 9100A to create automated test
or troubleshooting procedures.

A description of all TL/1 commands
arranged in alphabetical order for
quick reference.

xvii

(This page is intentionally blank.)

Xviii

Section 1
Introduction

ORGANIZATION OF THIS MANUAL 1.1.

This manual provides an organized approach to testing and
troubleshooting a UUT (Unit Under Test) with the
9100A/9105A. The intended reader is someone who will be
writing test programs or test procedures for use with the
9100A/9105A.

Additional information on the various parts of the 9100A/9105A
system is available in the Gerting Started booklet. More
information about using the operator's keypad for testing and
troubleshooting is available in the Technical Users’s Manual.
And more information on programming the 9100A/9105A is
available in the Programmer’s Manual and in the TL/1 Reference
Manual.

This manual is organized into three major parts:
Sections 1 to 3 give an overview of the capabilities of the
9100A/9105A and the process of developing functional tests and

automated troubleshooting procedures.

Section 4 describes some typical functional blocks for a
microprocessor-based UUT. For each typical functional block,

1-1

you will find a summary of things to consider for testing and
troubleshooting, a procedure for using the operator's keypad of
the 9100A/9105A for functional testing, a 9100A/9105A
programmed functional test, and a set of stimulus programs.

NOTE

Each of the functional blocks described in Section 4
are parts of a real UUT, the Fluke Demo/Trainer. It
is not necessary that you have the Demo/Trainer
UUT to use this manual, but you may wish to
purchase the DemolTrainer from Fluke so you can
try out the example procedures and programs.

Sections 5 to 7 show you how to build on the block functional
tests to develop functional tests for your whole UUT and how to
develop automated troubleshooting procedures using Guided
Fault Isolation (GFI).

PREPARING FOR TESTING AND TROUBLESHOOTING 1.2.

The 9100A/9105A is both a testing and a troubleshooting
system. As a test station, it determines whether functional
blocks of digital circuitry pass or fail. As a troubleshooting
station, it determines which nodes or circuit connections are
faulty.

The 9100A/9105A has many built-in functions which are useful
for functional testing, stimulation of nodes, and measurement of
node or component behavior. In addition, the 9100A has a
powerful programming language, called TL/1, that is used to
customize the capabilities of the 9100A/9105A to match the
testing and troubleshooting requirements for your UUT.

The Programmer's Interface option of the 9100A is used to enter
UUT information and to create programs that become the
building blocks for automated testing and troubleshooting. This
interface also provides an automated process for collecting and
storing node responses from a known-good UUT. When the
9100A/9105A 1is used for testing and troubleshooting,

1-2

measurements on a node are compared with these stored,
known-good node responses to determine whether the measured
node response is good or bad.

The 9100A is easily programmed. The operator's keypad and
display allow you to explore the operation of your UUT by
pressing keys on the keypad. Then, as you develop successful
test and troubleshooting procedures, you can put these
procedures into TL/1 programs to automate the process. Or, if
you prefer, you can write the TL/1 programs directly and then
check their operation with the debugger built into the 9100A.

The 9100A/9105A is very flexible; it can be used with several
different levels of investment in programming. As you increase
the level of programming, you increase the degree of automation
and the ease of testing and troubleshooting. Five typical levels
of programming effort are summarized below and are also
shown graphically in Figure 1-1.

® No programming effort: Use the keys of the operator's
keypad to initiate testing and troubleshooting actions. This
level is appropriate for testing or troubleshooting one-of-a-
kind UUTSs, where investment in programmed testing and
troubleshooting is not cost-effective. It is also valuable for
keystroke testing and troubleshooting prior to the
completion of programmed testing and troubleshooting.
Keystroke testing and troubleshooting requires a skilled
technician operator.

® Level 1 Programming: Create stimulus programs that
cause predictable activity at a node and characterize that
node activity on a known-good UUT. You may choose to
create the node list and the reference designator list at this
level also. If you do so, you will be able to backtrace from
a bad node to the fault which causes it. You do this by
pressing the GFI key on the operator's keypad and
specifying the failing node as the starting point.

® Level 2 Programming: Create functional tests for each
functional block of your UUT. These tests determine
whether the functional block passes or fails. Some block

1-3

1-4

LEVEL OF PROGRAMMING

Level 1

» Stimulus Programs for Nodes

* Learned Node Responses
from Known-Good UUT

» Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

TESTING AND TROUBLESHOOTING

CAPABILITY AT THIS LEVEL

= Can Determine Whether
Nodes Are Good or Bad

» Can Backtrace from a Bad
Node to the Fault (!f the Node
List and Reference Designator
List Are Complete)

= Can Use Level 1 Capabilities to
Determine Whether Functional
Blocks Pass or Fail

«Can Use Built-In Functional
Tests to Determine Whether
Functional Blocks Pass or Fail

«Includes Level 1 and
Level 2 Capabilities, and

» Can Determine Whether
the UUT Passes or Fails

*Includes Level 1, Level 2, and
Level 3 Capabilities, and

« Can Isolate the Failing
Functional Block and Generate
Hints to Start GFi

Figure 1-1: Recommended Programming Sequence

functional tests will use stimulus programs from Level 1,
and others will have independent functional test programs.

® Level 3 Programming: Create a go/no-go test for the entire
UUT, by using all of the necessary functional block tests
to create a functional test of the whole UUT. This test
determines whether a UUT is good or bad, but does not
usually isolate the fault.

® Level 4 Programming: Add procedures to the go/no-go
test that will isolate the faulty block for any UUTs that fail
the go/no-go functional test. This addition to the go/no-go
test provides efficient starting points for automated
troubleshooting with GFI. If you have not already done
so in Level 1, create the node list and the reference
designator list. Your program will then be able to
backtrace from a bad node to the fault which causes it. Or
you can backtrace by pressing the GFI key on the
operator's keypad and specifying a failing node as the
starting point.

The 9100A/9105A is the center of a expandable system. For
example, fixturing can be added to improve functional test
throughput in high-volume applications. In addition, the
9100A/9105A can be integrated with manufacturing systems or
host computers.

WHERE TO BEGIN 1.3.

The 9100A/9105A system can be operated manually from the
operator's keypad in an "immediate" (keystroke) mode, or it can
be programmed in TL/1 with functional tests and GFI
procedures using the programmer's interface of the 9100A.

A good overview of the full capabilities of the 9100A/9105A

will be helpful before you begin using it in either mode. One

good way to explore the use of the 9100A/9105A is to adopt the

techniques shown in this manual to your own UUT. While

reading Section 4, you might try some of the reads, writes, and

built-in tests on your own UUT. To try Guided Fault Isolation

v (GFI), you could treat a small portion of your UUT as if it were
” the entire system to be tested and diagnosed. Two or three

1-5

1-6

components connected to the microprocessor bus are usually
sufficient for such an introductory exploration.

This manual does not assume that you know the TL/1
programming language, although examples of TL/1 programs
are included throughout the manual. As you look over these
programs and their explanations, you will find many of them
quite understandable. However, in some places, you may want
to refer to the Technical User's Manual, the Programmer’s
Manual, or the TL/1 Reference Manual to learn how specific
keys or commands work.

Section 2
Overview of Testing and
Troubleshooting

"Testing" determines whether a circuit is good (passes) or bad
(fails). "Troubleshooting” finds the faulty component or node
causing a circuit to fail.

Before microprocessors, a circuit board was tested by applying a
sequence of patterns to inputs at the board's edges or at selected
nodes within the board's circuitry and then measuring the
output. However, for circuit boards that use microprocessors,
the most comprehensive coverage is provided by controlling the
UUT from the microprocessor bus. One common method of
doing this is to plug in a tester at the microprocessor socket.

Testers that control the microprocessor bus must be able to apply
stimuli and capture responses at specific times during the cycles.
As an example, consider a buffer on a microprocessor data bus:
since data is only stable during a small period of the bus cycle,
the outputs of the buffer must be measured at the proper time
during the bus read/write cycle.

The basic functions of a test system and the basic functions of a
troubleshooting system are similar. During either task, the
system must emulate bus cycles and measure levels and signal
patterns. But the two tasks have different goals. During testing,
the goal is to determine whether a UUT is good or bad; it is not
necessary to know where the faults are. However, in

2-1

troubleshooting the goal is to determine what component is bad
or what node is bad so that the UUT can be repaired.

Figure 2-1 shows a testing, troubleshooting, and repair cycle.
Some users consider testing and troubleshooting to be
completely separate tasks. Other users consider them to be
almost identical. In situations where volumes of each type of
board tested are high, and where many of the boards are likely to
be good, the testing and troubleshooting tasks are often
separated. But if board volumes are low or if many of the
boards tested are faulty, the testing and troubleshooting tasks are
often combined into a single process.

The 9100A/9105A can perform testing and troubleshooting as a
single task or as separate tasks. In either case, the system's
TL/1 programs are very similar because of the modular structure
encouraged by the 9100A programming environment. This
manual discusses a broad variety of test and troubleshooting
techniques; you can then determine how the techniques should
be linked and to what degree the entire process should be
automated for your application.

EMULATIVE TESTING 2.1.

2-2

The 9100A/9105A is an emulative tester and troubleshooter. By
taking control of the UUT's microprocessor bus, the
9100A/9105A can perform all operations, apply all stimuli, and
capture any responses that the UUT microprocessor could.

The 9100A/9105A is designed for testing microprocessor-based
hardware. The emulative testing approach of the 9100A/9105A
should not be confused with in-circuit emulators which also plug
into the microprocessor socket and are designed to test software.
The in-circuit emulators are difficult to use for board testing
because they work with assembly language (which is different
from one microprocessor to another). They also require the use
of breakpoints to allow examination of UUT registers and
memory to check out operation of the UUT. In contrast, the
TL/1 programming language of the 9100A/9105A has

Board To Be Tested
And/Or Repaired

Report
Failure Data

Functional Fail

Tost Troubleshoot

Pass

Report
As Good

¥
' Done)

Repair

Figure 2-1: Testing, Troubleshooting, and Repair

2-3

2-4

commands to perform read or write accesses without requiring
that you write any assembly language.

The basic elements of the 9100A/9105A system's emulative
testing are:

¢ Stimulation and response sensing at the microprocessor
bus by the pod.

¢ Stimulation of circuitry by the pod, probe, and 1/O
module.

g Measurement of stimulation responses with the pod,
probe, and I/O module as the signals propagate throughout
the UUT.

® High-level programming language (independent of the
target microprocessor) to control microprocessor accesses
and operations.

Figure 2-2 illustrates these capabilities. The method of
emulative testing allows the pod to read from and write to any
components that the microprocessor can access. The pod can
initialize and program components in the UUT, such as DMA
controllers, PIAs, serial ports, and video controllers.

In addition to controlling the UUT from the microprocessor bus,
the pod senses loaded or faulty lines at the socket where the pod
plugs into the UUT. For example, if a data line has a short to
ground, the pod will detect that the line cannot be driven when
the pod attempts to drive the line high.

The I/O modules and the probe can measure and stimulate all of
the UUT's digital circuitry, including circuits not directly
accessible by the pod. The pod, 1/O module, and probe are
used together or individually to provide a stimulus and to capture
responses.

The 9100A/9105A can characterize nodes with CRC signatures,
level histories (asynchronous or synchronous), transition
counts, and frequencies using the single-point probe or 40-line
I/O modules. I/O modules accommodate clip modules that fit

G

RS-232 Ports

P

9100A/9105A
Mainframe

External Control Pod
Lines For
Probe l l
/0
Module 1* Clock

1 Module Microprocessor

-5 Bus
40 “1 Control K\ Probe
1/10

uuT

110
Module 2~
]
51 40
Control /0

* Up to four /0O modules may be used.

<

Figure 2-2: Emulative Testing With the 9100A/9105A

2-5

various IC packages. The I/O modules can also be used in
fixturing.

When the 9100A/9105A stimulates the UUT through the
microprocessor bus, an I/O module or the probe can measure the
signals as they propagate through the UUT. Or, the I/O
modules can stimulate nodes and the pod can measure the
activity from the microprocessor bus.

A powerful feature of the 9100A/9105A is that it can perform
measurements which are synchronized to microprocessor
operations. For example, consider the microprocessor bus. It is
a flurry of activity when examined with an oscilloscope, but the
9100A/9105A can control this activity and can examine the
signals on the data bus at times when the signals are valid.

The probe and I/O modules can be synchronized to data,
address, and other pod cycles, as well as to external Clock,
Start, Stop and Enable inputs provided on the 9100A/9105A's
I/0O module and clock module. The external sync modes are
valuable for measuring events asynchronous to the
microprocessor, such as video signals and free-running
counters.

NODE CHARACTERIZATION 2.2

2-6

Node characterization is the process of finding a description of
the correct activity at a node, given an appropriate stimulus to the
UUT to exercise the node. A quality characterization is one that
is repeatable from one measurement to another, from one UUT
to another, and from one day to another. In addition, incorrect
activity at the node should result in a value that is different from
the characterization for correct node activity. The 9100A/9105A
uses the probe or the I/O module to measure five node
characteristics:

® CRC signature: This measures high and low levels relative
to a series of events (called "clock” or "sync") and then
encodes a Cyclic Redundancy Check (CRC) number
representing both level and timing. The signature, if

stable, is the most accurate characterization of a node. If
the node changes states at or near the clock transition, the
signature is considered marginal because a slight relative
time change between clock and data will change the
signature.

¢ Asynchronous level history: This indicates whether the
node was ever at a high, low, or invalid level at any time
during a specified period.

o Clocked (synchronous) level history: This indicates
whether the node was ever at a high, low; or invalid level
at any clock or sync edge during a specified period.

¢ Transition count: This measures how many times the node
goes low-to-high during the measurement period. When a
given node is measured, a single count value is returned.
Learned responses stored in a response file, however, may
appear as a range of counts. If a range of counts is
specified, the measurement will be considered good if it is
within the specified range.

® Frequency: This measurement is done during a set time
interval and is unrelated to clock or sync modes. As with
transition counts, learned responses stored in a response
file may appear as a range of frequencies.

STIMULUS AND MEASUREMENT CAPABILITIES 2.3.

Figure 2-3 is an overview of the stimulus and measurement
capabilities of the 9100A/9105A. The devices used for this
include the:

o Pod.
® Probe (with clock module).
* I/0 module.

The following sections describe the capabilities of each of these
devices.

External Devices

A

A

PROBE
POD (With Clock Module) V'O MODULE

Function: Function: Function:
» Microprocessor « Single channel * 40 channels

bus access = Input and output « Input and output
Measurement: Measurement: Measurement:
« Read status lines « Level activity: « Level activity
* Read Asynchronous Asynchronous

: Synchronous Synchronous

Stimulus: « Transition counts « Transition counts
* Reads, writes *CRC signatures « CRC signatures

« Write control lines

Stimulus and test functions:

Bus test

ROM test

RAM tests

Ramp

Rotate

Toggle

Pod-dependent functions

= Frequency to 40 MHz

Synchronization to:

* Pod

» External (Clock, Start,
Stop, and Enable lines)

*Freerun clock

* Programmed (internal)

Stimulus:

= Drive or overdrive outputs
(Pulse low, pulse high,
or toggle)

* Frequency to 10 MHz
« Pattern recognition

Synchronization to:

» Pod

» External (Clock, Start,
Stop, and Enable lines)

* Freerun clock

« Programmed (internal)

Stimulus:
= Drive or overdrive outputs
« Output stored patterns

Figure 2-3: 9100A/9105A Stimulus and Measurement Capability

2-8

Pod Capabilities 2.3.1.

The Fluke interface pods provide the interface between the
9100A/9105A and the microprocessor bus of a UUT. The pod
has two modes of operation: normal mode (where the
microprocessor in the pod exercises the UUT microprocessor
bus while monitoring the activity on this bus) and RUN UUT
mode (where the microprocessor in the pod runs programs
stored in UUT memory). A wide variety of stimulus and
measurement commands are available either from the operator's
keypad or from programs written for automated implementation.

Additional information about pods, their use, and their
specifications is contained in section 2.4 of the Technical User's
Manual, the pod manual for the pod you are using, the
Supplemental Pod Information for 9100A/9105A Users Manual,
and section 3.5 of the Programmer’s Manual.

U Probe Capabilities (With The Clock Module) 23.2.

The probe can provide either measurement or output at any
selected node of a UUT.

The probe can measure CRC signatures, asynchronous level
histories, clocked (synchronous) level histories, transition
counts, and frequencies. It has built-in lights to show the
current asynchronous level (or levels) at the probe tip or to show
the level (or levels) last seen by the synchronous level history
latches. The probe can be set up to use one of three different
sets of logic thresholds for its measurements: TTL, CMOS, or
RS-232.

The probe can also be used as an output device to output a series
of pulses. The pulses can be high, low, or can toggle between
high and low. The probe has sufficient drive capability (200mA
for less than 10usec or SmA continuously) to overdrive most
circuit nodes.

The probe is synchronized to other events by four
:' ~ synchronization modes: freerun clock, pod data or address

sync, external sync (using the external control lines of the Clock
Module), and internal sync (for use under program control
only). The external control lines of the Clock Module use TTL-
level thresholds.

Additional information about the probe, its use, and its
specifications is contained in section 2.5 of the Technical User's
Manual, Appendix D of the Technical User's Manual, and
section 3.6 of the Programmer’s Manual.

I/0 Module Capabilities 2.3.3.

2-10

Each I/O module can make simultaneous connection with up to
40 UUT nodes. I/O module adapters provide an interface
between the general-purpose connectors on the I/O module and
components on a UUT. The smaller clip modules can be
plugged into either side A or side B of the I/O modules, and the
larger clip modules use both connectors.

An J/O module can measure CRC signatures, asynchronous
level histories, clocked (synchronous) level histories, transition
counts, and frequencies. Unlike the probe, an I/0 module can
measure multiple pins at the same time. An I/O module can be
set up to use one of two different sets of logic thresholds for its
measurements: TTL and CMOS.

In addition, I/O modules can recognize words that exist across
selected UUT nodes. Recognition of specified words generates
a Data Compare Equal (DCE) condition, sends a signal out the
DCE pin at the side of the I/O module, and terminates any RUN
UUT in progress.

I/O module outputs can be latched high or low, pulsed high or
low, or allowed to float (high-impedence). In addition, it can
use TL/1 commands to drive patterns out of each output.
Responses can be measured at any pin while the I/O module is
driving a pattern. An I/O module has sufficient drive capability
(2A for less than 10usec or 200mA continuously) to overdrive
most circuit nodes.

An I/O module is synchronized to other events by four
synchronization modes: freerun clock, pod data or address
sync, external sync (using the external control lines located on
the I/O module itself), and internal sync (for use under program
control only). The external control lines use TTL-level
thresholds.

Additional information about the I/O modules, their use, and
their specifications is contained in section 2.5 of the Technical
User’s Manual, Appendix D of the Technical User’s Manual,
and section 3.6 of the Programmer’s Manual.

TESTING AND TROUBLESHOOTING WITH
THE 9100A/9105A 2.4.

The 9100A/9105A can be used for:

¢ Functional testing.

¢ Troubleshooting.

¢ Combined testing and troubleshooting.

As a functional tester, the 9100A/9105A can determine whether
a UUT passes or fails a series of tests. As a troubleshooter, the
the system can first isolate the failing functional block and then

identify a starting location from which detailed fault isolation can
locate the node or component causing the failure.

When testing and troubleshooting are performed at the same test
station, the 9100A/9105A performs the following sequence of
operations:

1. Perform a go/no-go (pass/fail) test of the UUT.

2. Diagnose a failing UUT to determine which
functional block is failing.

3. Identify a starting point for fault isolation.

4. Locate the the node or component causing the failure.

2-11

If testing and troubleshooting are performed at separate stations,
the 9100A/9105A would perform Step 1 at the testing station
and Steps 2 through 4 at the troubleshooting station.

In situations where Step 1 is performed by another type of
tester, which identifies suspect functional blocks to the
9100A/9105A, the 9100A/9105A can verify that the problem is
really in the indicated block before detailed fault isolation is
begun. Occasionally, the real problem is in a different functional
block than that indicated by functional testing; for example, a
functional tester might indicate a fault in the interrupt circuit,
whereas the real fault may lie in the serial I/O circuit. If the
failure is not in the indicated functional block, the 9100A/9105A
at the troubleshooting station can perform its own full functional
test to determine the location of the problem.

The 9100A/9105A has very fast built-in functions to test the
microprocessor bus, ROM, and RAM, as well as powerful built-
in fault condition handling capabilities that ease the
communication between the testing functions and the
troubleshooting functions.

After stimulus programs and a reference list of parts have been
developed for a UUT, the process of testing can be greatly
simplified with the TL/1 programming language's gfi rest
command, which uses portions of the 9100A/9105A's Guided
Fault Isolation (GFI) database to automate much of the data
collection and comparison needed for evaluation of test results.

GFI Troubleshooting:

The 9100A/9105A uses the backtracing method (from bad to
good) for its built-in Guided Fault Isolation troubleshooting
capability. A functional test locates outputs that appear bad, and
GFI starts backtracing from those outputs to locate quickly the
failing node. In doing this, GFI uses its database of IC pinouts
(the part library, largely supplied by Fluke) and your node list
(with part-number references).

The built-in GFI algorithm is efficient at backtracing. However,
troubleshooting time can be further reduced by having functional
tests provide suggested starting points for GFI (called "GFI
hints") as close as possible to the failing node or component.
Hints which are close to the fault improve the efficiency of GFI
by decreasing the number of nodes that GFI must trace through
before reaching the fault.

You can improve GFI's backtracing by:

¢ Developing functional tests for intermediate functional
blocks wherever practical. If a functional test for a major
block fails, test the intermediate functional blocks and
provide hints which are close to the failure.

¢ Designing functional tests that, upon failure, measure
intermediate nodes in order to provide hints close to the
failure. Functional tests can also include fault condition
handlers that interpret diagnostic messages to determine
where the failure might be located.

2-13

(This page is intentionally blank.)

Section 3
Developing Procedures
and Programs

UNDERSTANDING THE UUT 3.1.

A UUT should be well understood before functional tests and
troubleshooting routines are developed. Taking time at the
beginning to study the UUT will result in quicker program
development, greater fault coverage, and more accurate fault
detection.

Before developing functional test programs and troubleshooting
routines:

@ Learn what each circuit does, how it works, and how to
initialize it.
® Determine the UUT memory map.

® Determine the initialization procedures for each
programmable chip.

PARTITIONING THE UUT 3.2.

Circuit partitioning involves dividing the entire circuit into a
collection of smaller functional blocks which are easier to

3-1

understand and test. It is the first step toward a divide-and-
conquer method of testing and troubleshooting and it is time well
spent. Once the task is done, the functional blocks can be
considered as components, each of which receives inputs and
generates outputs. Like an IC, a functional block is suspected of
being bad if it has good inputs and bad outputs.

Here are some guidelines for partitioning circuits:

® Group circuits by function, making the functional blocks
well-defined pieces of the UUT block diagram and as
logically distinct as possible.

® If a functional block is large, subdivide it. This will
improve troubleshooting efficiency.

® If failure of a circuit can cause failures to appear in many
other parts of the UUT, make that circuit a functional

block.
® If acircuit requires a unique test setup, make it a functional
block.
An Example of Partitioning 3.2.1

(The Demo/Trainer UUT)

3-2

The Demo/Trainer UUT (Figure 3-1) is an 80286-based system
which includes ROM, Dynamic RAM, Parallel I/O, Video, and
Serial I/O circuits. It is available from Fluke as an option and is
a good example of 16-bit microcomputer systems. Contact a
Fluke representative for information about this option.

The test and troubleshooting examples throughout this manual
relate to the Demo/Trainer UUT. With it, you can perform the
hands-on tests given in the following sections. The complete
UUT nodelist, part-reference list, and schematics are shown in
the appendices of the manual.

If you do not have a Demo/Trainer UUT, the examples provide
enough information so that you can follow the techniques and
sample programs and apply the concepts to your UUT.

@ RS-232 CONNECTOR

@ VIDEO CONNECTOR

@ TEST SWITCHES (S1 THROUGH S4)
@ STATUS LEDs

@ KEYBOARD CONNECTOR

@ RESET BUTTON

@ 80286 MICROPROCESSOR

Figure 3-1: Demo/Trainer UUT

3-3

A simple block diagram of the Demo/Trainer UUT might show
only five blocks: RAM, ROM, Parallel I/O, Serial I/O, and
Video. While this is useful as an overview of what the system
does, it is inadequate for the development of test and
troubleshooting procedures. By subdividing this diagram into
smaller sections, we arrive at functional blocks that can be more
easily understood. Figure 3-2 shows these smaller blocks,
which will be used as examples throughout this manual.

For example, the video circuitry is subdivided into three
functional blocks: Video Output, Video Control, and Video
RAM. This was done in anticipation that three distinct
troubleshooting setups would be needed for the video circuitry.
It was also done to reduce troubleshooting time by allowing
functional tests to determine which portion of the video circuit
has failed before GFI is invoked. Remember, troubleshooting
with GFI normally begins at an output node of the failing
functional block and backtraces toward good inputs to that
block. Subdivision allows GFI to begin backtracing closer to
the fault. For similar reasons, the dynamic RAM circuit is
subdivided into RAM and Dynamic RAM Timing.

The microprocessor itself is shown in Figure 3-2 as a separate
functional block for a good reason: when the pod replaces the
microprocessor, it becomes a known-good functional block. All
outputs from this circuit can be directly controlled by the
9100A/9105A. The pod checks for drivability on every UUT
access and reports if there is a loading problem.

The Bus Buffer is partitioned separately, not for reasons of
clarity, but so that it can have its own functional tests. If this
circuit has a fault in it, the fault will cause most of the other
functional blocks to also fail. So if the UUT fails a functional
test, it is more efficient to check the Bus Buffer early in the
troubleshooting process.

READY

Ul
i 7
RAM Timing

1

[

ROM Ready
Circuit

I

Clock and alngmm l
Reset
L
[— ﬁ " Video
S | video |deoAddressJ\ Video Data , Video
L Y| Control f——w——— 1 RAM |——/Cutput| _, SIRTI
| ——N isplay
L M- | nTR u

processor L {1

L] LI

Serial Interrupt
o [+ RS232 Circut

T——— Keyboard

—
[T

\L Status and

_Control

s, [T

[

fleT Ul

Aderess Timer Interrupt
[
N\ } | Pa;%llel .
Address L L—» LED Displays
Decode T

Switch Inputs

Figure 3-2: Demo/Trainer UUT Functional Blocks

3-5

The Advantage of Partitioning 3.2.2

After the partitioning is done, step back and look at the resulting
detailed block diagram. Imagine that a functional test has been
developed for each individual block. If a novice user has
nothing but this block diagram and the collection of individual
block tests, he can make a fair degree of progress toward
troubleshooting and repairing a complex system.

With thoughtful partitioning, a board may be determined to be
good without running all of its individual functional block tests;
some functional blocks can be assumed to be good if tests for
other functional blocks that depend on them are good.

Through partitioning, the large problem of testing and
troubleshooting a complex system can be subdivided into
smaller, more easily handled problems.

PROGRAM DEVELOPMENT SEQUENCE 3.3.

3-6

There are four levels in programming with the 9100A, as shown
in Figure 3-3. Each level is a building block for the next level of
programming.

The sequence shown below is the most efficient method of
developing programs if you plan to develop both functional
testing and GFI troubleshooting capability. This is because the
functional block tests in Step 2 can often use the GFI stimulus
programs developed in Step 1 to test the outputs of a functional
block (See Section 3.5.1 for additional explanation). However,
in other situations, you may need to use your 9100A/9105A for
functional testing as soon as possible, even before
troubleshooting programs can be developed. In this case you
may want to do Steps 2 and 3 before doing Step 1.

The four steps of programming are:
1. Stimulus programs for nodes are created and

responses from a known-good UUT are learned.
(Sections 3 and 4 of this manual)

Level 1

= Stimulus Programs for Nodes

« Learned Node Responses
from Known-Good UUT

*Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 3-3: Building-Block Programming

If the node list and reference designator list are also
created, this level will allow not only testing a node,
but also automated backtracing from a bad node to
the fault.

2. Functional tests of entire functional blocks are
created. The gfi test command can use your stimulus
programs and learned responses for fast, effortless
functional tests of these blocks. (Sections 3 and 4 of
this manual.)

3. A UUT golno-go test is built from the functional
tests of functional blocks. (Section 5 of this manual)

4. Diagnostic programs are created by adding fault
handlers and gfi hint commands to the UUT go/no-
go test. The diagnostic program traps faults and
initiates tests of functional blocks that may be
responsible for the fault, thereby isolating the
functional block that is causing the UUT to fail.
When the failing output of the block is found, then a
GFI hint is generated and GFI will begin backtracing
the failing circuitry. (Section 6 of this manual)

After the fourth programming level, the go/no-go test will isolate
the failing functional block and then will start GFI
troubleshooting (Section 7 of this manual) to backtrace to the
bad node or component.

STIMULUS PROGRAMS AND LEARNED
RESPONSES 3.4.

Stimulus programs and learned responses constitute the first of
the four levels in programmed testing and troubleshooting, as
shown in Figure 3-4.

Stimulus programs create predictable node activity so that one or

more nodes can be characterized. When properly designed,
these programs are usually short and simple. With the 9100A,

3-8

Level 2 l

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

1o the Block Level

Figure 3-4: Functional Tests for Nodes (Level 1)

3-9

the most difficult task related to writing stimulus programs is
understanding how the UUT operates.

Learned responses are the responses of a known-good UUT to
the stimulus programs. The 9100A/9105A can store these
responses from a known-good UUT for use in testing other
identical UUTs.

Rules for Stimulus Programs 3.4.1.

3-10

Stimulus programs must follow these rules, to ensure that GFI
troubleshooting reaches correct conclusions:

Measure Outputs. Use stimulus programs to characterize
signal sources (outputs) only.

Provide Initialization. 1If a circuit ever requires
initialization, place an initialization procedure in the
stimulus program. The initialization must be performed
before the measurement is started. The best place for
initialization is near the beginning of the stimulus program.

A Separate Program for Each Signal Source on a Node.
Create a separate stimulus program for every signal source
(output) on a node. A bidirectional line between two
components should have at least two stimulus programs,
one for each direction of data flow. Buses should have at
least one stimulus program for every component that can
output on the bus.

A Separate Program for Each Mode of Output. Create a
separate stimulus program for each way that an output is
operated in normal UUT operation. For example, if a
buffer on an address bus is stimulated by the
microprocessor and also by a DMA controller, create two
stimulus programs for the outputs of the buffer: one from
the microprocessor, and one from the DMA controller.

Keep It Simple. If a stimulus program becomes complex,
find a way to split it up into more than one program. For
example, consider a PIA chip connected to a data bus and a
keypad that can be read through the PIA. The stimulus

program that enables the PIA data lines onto the data bus
should initialize registers at the beginning of the program,
then the program should read the registers in the PIA chip.

The Flow of Stimulus Across the UUT 3.4.2.

Stimulus programs are unrelated to functional blocks.
Functional blocks are only defined to help with functional
testing.

Stimuli generally flow from the microprocessor kernel toward
the outputs of the UUT. Some stimulus programs may
characterize the outputs of many components while other
stimulus programs may characterize only a few outputs.

The key to efficient stimulus programs is to begin at some
outputs of the microprocessor kernel that can be stimulated.
Stimulate these outputs and trace through the circuit to see how
many other output nodes can be characterized. Find nodes that
have not been characterized, and decide what is needed to
stimulate them. Then, see how many nodes are covered.
Continue this process until each node is covered by at least one
stimulus program.

A good way to keep track of which nodes have been covered is
to use a set of colored markers. Using a separate color for each
stimulus program, color in a small region around the output
nodes which will be stimulated by that program (remember,
stimulus programs only apply to signal sources). Even for a
complex UUT, the strategy for creating stimulus programs for
an entire UUT can be "mapped out" in a few hours. The time
spent will promote better software organization and speed up
both the writing of stimulus programs and the process of
learning the responses.

Keep in mind the rules described in the Section 3.4.1, and
remember that some outputs will be characterized by more than
one stimulus program.

Stimulus Program Planning 3.4.3.

3-12

Stimulus programs and their matching response files are used by
the 9100A/9105A Guided Fault Isolation (GFI) to backtrace
through a failing circuit in a UUT to find the fault. The stimulus
programs exercise a portion of the UUT circuitry in order to
produce repeatable activity at circuit nodes to be measured. This
activity at each node is measured on a known-good UUT and a
characterization of this known-good response is stored in a
response file. Each response file stores characterizations of how
some circuit nodes on a good UUT perform as a result of its
matching stimulus program. There is one response file for every
stimulus program.

Each of the fourteen functional blocks in Section 4 includes a
figure titled "Stimulus Program Planning.” Figure 3-5 shows an
example of such a figure.

The purpose of the stimulus program planning diagrams is to
illustrate how to design the stimulus programs for a UUT. In
general, you should begin the process of creating stimulus
programs by identifying outputs from the microprocessor that
can be exercised (such as the address bus, data bus, and control
lines). Characterize all those nodes that are stimulated, then find
some nodes that are not characterized and design stimulus
programs to stimulate them. In general, start at the
microprocessor and work outwards to the I/O devices. Continue
until all nodes in the UUT are characterized.

The left-hand page of Figure 3-5 shows six blocks that represent
six stimulus programs and their matching response files. Each
of these stimulus program/response file pairs are used to
stimulate and characterize nodes in this functional block.

The block for the addr out stimulus program shows that it
stimulates the outputs of the address buffers: U16, U2, and
U22. As you examine each of the stimulus program planning
figures in Section 4 of this manual, you will notice that the
addr out stimulus program stimulates nodes in many of these
functional blocks. This is because the stimulus programs are not

(This page is intentionally blank.)

3-13

Example

Stimulus Program Planning

PROGRAM: CTRL.OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS
SYNCHRONIZATION

MEASUREMENT AT:

u22-56
Us7-8
u1s-16
U45-8

3-14

Example

READY
CIACUIT
L
i
—— LK == CLOCK AND RESET |

5 ALSI0
uSE
Ls3z2
= s ¢
ALEDD 16| Lan e ALATEH
.! by | e
|

£
ConTHTE T o1

L=
=]
g |

P DYNAMIC
w/ TG 317 6 45w

ADDAESS
DECO0E

Inl8
OE
< uz
INTERRUPT -
CIRCUIT
| an7 -
406
A0S B
e
A3
:g? BARALLEL
noé | 1/0
015 o -— SEALAL
Dtz o | 10
LTE] o
o1z - D
[T D3
) FH)
[oos 1008)
oos TC0E
VIDED
AAM
1005
3 VIDED
ez " CONTROL |
= |
=

Figure 3-5: Example of Stimulus Program Planning Figure

3-15

limited by functional block boundaries and typically will
stimulate nodes over several functional blocks.

Figure 3-5 shows that the data out stimulus program stimulates
the bidirectional data bus when the microprocessor is sending
out data (a write operation). The figure also shows that the
roml data stimulus program is used to stimulate the data bus
buffers U3 and U23 when data is flowing into the
microprocessor (a read operation).

The other three stimulus programs shown (ctrl_outl, ctrl_out2,

and ctrl_out3) stimulate the control line outputs from the
microprocessor and bus controller IC (an 82288 chip); ctrl_outl
stimulates the control lines using pod data synchronization;
ctrl_out2 stimulates the control lines using pod address
synchronization; ctrl_out3 generates an interrupt acknowledge
cycle and stimulates the control lines using interrupt
acknowledge synchronization.

When planning the stimulus programs for your UUT, you can
use colored pens to map out which outputs in your UUT will be
covered by which stimulus programs. You should start with the
address signals, data signals, and control signals. After that, you
can plan what is required for stimulus programs for other
outputs in your UUT, working from the kernel toward the I/O of
the UUT.

Suggestions about Stimulus Programs 3.4.4.

3-16

The actual stimulus programs used for the Demo/Trainer UUT
are listed in Section 4 of this manual. Some stimulus programs
stimulate nodes in several functional blocks and other stimulus
programs stimulate only a few nodes. The fact that, in Section
4, stimulus program coverage is organized by functional blocks
does not imply that the stimulus programs observe functional-
block boundaries. Stimulus programs do not care about
functional block boundaries and usually will exercise nodes
across functional-block boundaries.

Each of these stimulus programs in Section 4 follows a standard
form that can be divided into five parts:

¢ Initialize the circuit and define the measurement device.
¢ Set up the stimulus and measurement devices.

¢ Start the measurement.

¢ Stimulate the circuit.

¢ Stop the measurement.

® Restore any conditions changed by the setup, above.

Figure 3-6 shows a simple stimulus program with each of the
six parts labeled. Circuits that contain programmable
components require initialization. Any circuit that needs
initialization should have it provided in the stimulus program.
This is necessary since there is no way to determine the order in
which stimulus programs will be run when GFI or UFI
troubleshooting is performed. Therefore, each stimulus
program should perform any initialization the circuit needs.

Defining the Measurement Device

Most stimulus programs use the I/O modules and the probe as
measurement devices. When GFI or UFI is using the 1/O
module as a measurement device, a message is displayed which
prompts the operator to clip onto the component and to push the
Ready button on the clip module. When the operator does this,
the 9100A/9105A identifies the /O module and the side (A or B)
being used.

GFI or UFI can tell a stimulus program which device is being
used. It is a good idea to write your stimulus programs so that
the measurement device name is obtained from GFI or UFI
rather than specifying the device name in the stimulus program.
Getting the name from GFI or UFI has the advantage that the
operator can connect a clip to either side of any of the four I/O
modules. The operator can use several I/O modules, each with a

3-17

program data bus

if (gfi control) = "yes"™ then ! DEFINE THE MEASUREMENT
devname = gfi device { DEVICE
else
devname = "/modl”
end if
podsetup ‘'enable ~ready® "off" ! SET UP THE MEASUREMENT
podsetup ‘report power® "“off" ! AND STIMULUS DEVICES

podsetup 'report forcing' "off"

podsetup ‘'report intr' “off"

podsetup 'report address' "off"

podsetup ‘report data' “off"

podsetup ‘report control' “off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data"

arm device devname ! START THE MEASUREMENT
rampdata addr 0, data 0, mask SFF ! STIMULATE THE CIRCUIT
rampdata addr 0, data 0, mask $FF00

readout device devname ! STOP THE MEASUREMENT

podsetup 'enable ~ready' "on" 1 RESTORE READY

end program

Figure 3-6: Parts of a Stimulus Program

3-18

O

different size of clip, and the stimulus program will still work
with any of these configurations.

The stimulus program shown in Figure 3-6 uses the TL/1 gfi
control command to determine that GFI or UFI is executing the
stimulus program. If GFI or UFI is executing the program, the
gfi device command is used to return the name of the
measurement device.

Using the /O Module as a Stimulus Device

Each I/O module can be used to overdrive a limited number of
components. The same I/O module or a different I/O module
may be used to measure circuit response.

For example, suppose an I/O module is used to perform a truth-
table test of a 7400 NAND gate. The I/O module is clipped to
the 7400. Pins 1 and 2 of the 7400 are inputs and pin 3 is the
output. The same I/O module drives the inputs and measures
CRC signature responses on the output. Each time the pattern is
driven on the inputs, the output's CRC signature is sampled.

In this example, the same I/O module is used as the stimulus
device and as the measurement device. In some cases, more
than one clip is used in stimulating and measuring circuit
response. The gfi device command returns the device name of
the measurement device being used.

The stimulus program should use the clip command or the assoc
command to identify the stimulus device. This command will
prompt the operator to clip to the component and push the Ready
button on the clip module. Using this method to identify the
stimulus device creates a program that allows the operator to use
any I/O module for the measurement device and any other I/O
module for the stimulus device.

Two steps are necessary to drive a pattern on a set of inputs.
First, a storepatt command is written for each input pin to be
driven. If five inputs are to be driven, five storepatt commands
are needed. After the patterns are defined by storepatt, a

3-19

3-20

writepatt command is used to clock out all the defined patterns in
parallel.

The 1/O module has 40 lines. Clips have 14 to 40 pins. Each
clip maps to the I/O module lines in a different way. The 40-pin
clip is one for one (clip-pin 1 is mapped to I/O module-line 1,
etc.). The other clips have a different mappings (shown in
appendix B of the Technical User's Manual).

The TL/1 commands that involve an I/O module refer to pin
numbers in three different ways. These TL/1 commands have a
parameter that specifies the device name. If the device name is
an I/O module name (such as "/mod1"), any pin numbers in that
command will be treated as I/O module line numbers. If the
device name is a clip module name (such as "/mod1A"), any pin
numbers in that command will be treated as clip module pin
numbers. And, if the device name is a reference designator
(such as "U14"), any pin numbers in that command will be
treated as component pin numbers.

If the device name is a reference designator, the component must
have been clipped in response to a request from GFI, or in
response to a TL/1 clip command prior to being used in an I/O
module command.

Consider the example of a 7400 that is to have pins 1 and 2
driven by the I/O module. The reference designator for the 7400
is U3. The following TL/1 commands will perform a truth table
test on one gate in the 7400:

dev = clip ref "U3"™, pins 14
storepatt device "U3", pin 1, patt "1010"
storepatt device "U3", pin 2, patt "1100"
arm device dev

writepatt device dev
readout device dev

The clip command must be used here to define the I/O module
and the I/O module side (A or B) that is clipped to U3. The two
storepatt commands define the pattern to drive on pins 1 and 2 of
U3. Because a reference designator was used as the device
name (rather than a clip module name like "/mod1A") in the

G

Storepatt commands, any size of clip can be connected to U3.
Suppose a 16-pin clip is connected to U3. The 9100A/9105A
knows, from the clip command, that the part has 14 pins. As
Iong as pin 1 of the 16-pin clip is placed on pin 1 of the
component, the 9100A/9105A will map the pins correctly. GFI
and UFI are also able to use clips larger than the component they
clip over to measure the response of that component.

The arm and readout commands start and stop the measurement.
Inside the measurement, the writepatt command sends the
defined patterns to the specified pins. Because the writepatt
command is surrounded by the arm and readout commands, a
CRC signature can be gathered on the input pins or the output
pins of the component, as determined by GFL

In general, stimulus programs can be written so that any I/O
module can be used either for stimulus or measurement. To do
this, use the device name returned by the TL/1 gfi device
command for measurement devices. If the stimulus program
uses the 1/0 module as a stimulus device, use the clip statement
and reference names for device names in the TL/1 commands
(pin-number parameters) that interact with the I/O module.

FUNCTIONAL TESTS 3.5.

Functional tests of blocks are the second of the four modular
levels in programming the 9100A, as shown in Figure 3-7. In
this second level, tests of functional blocks are created from
stimulus programs and response files.

The goal of a functional test is to evaluate the performance of the
functional block and to decide whether the entire block is good
(passes) or bad (fails). As shown in Figure 3-8, such a test can
be divided into the following steps:

1. Initialize the circuits in the block (if necessary).

2. Stimulate the inputs to the block.

3. Measure the outputs from the block.

Level 1 I

« Stimulus Programs for Nodes

«Learned Node Responses
from Known-Good UUT

= Node List and Reference
Designator List (Both Optional)

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 3-7: Functional Tests for Functional Blocks (Level 2)

3-22

G

Initialize

Stimulate

Measure

Evaluate
(Passes or Fails)

Figure 3-8: Functional Test Elements

3-23

4. Evaluate each output and decide whether the output
passes or fails. If all outputs pass, the block is
good, otherwise it is bad.

Programmed Functional Tests 3.5.1.

Programmed functional tests perform all four functional test
steps automatically. There are three basic methods of writing
functional tests for each functional block in the UUT:

® Using the TL/1 built-in functional test commands - Use for
testing the microprocessor bus, RAM, and ROM.

® Building on stimulus programs - Use the gfi test command
to build on stimulus programs and learned responses.

. Writing TL/1 programs which are independent of GFI -
These programs must perform all four functional test
steps.

Using Built-In Functional Test Commands

For some functional blocks, such as the microprocessor bus,
ROM, and RAM, you should not use the gfi test command.
Instead, these blocks can be tested with the built-in TL/1
functional test commands testbus, testramfast, testramful, and
testromfull.

Building On Stimulus Programs

3-24

Stimulus programs and learned responses are used to decide if a
node passes or fails. The TL/1 programming language has a
command called gfi test, which performs Steps 1 through 3 of
functional testing and part of Step 4 (see Figure 3-8).

The gfi test command tests an entire component (if the I/O
module is the measurement device) and returns a passes or fails
result. The command runs all stimulus programs associated
with all pins on the component and compares the responses to

G

the learned responses. It returns a "passes” result if all pins on
the component are good.

Suppose the buffers of a 24-bit microprocessor address bus are
tested as a functional block. If the functional test is written
without the gfi test command, the test would perform the
following operations:

1. Stimulate the address bus.
2. Capture signatures on the 24 address lines.

3. Compare captured signatures with known-good
signatures (24 if/then statements).

The same functional test using the gfi test command would
require only three gfi test commands. Using this command
decreases the time required to write functional test programs.

Using the gfi test command provides an additional important
advantage. When it is used, the known-good responses are
automatically retrieved from the the 9100A/9105A's response
files. Whenever a board is revised, the response files must be
updated. If a functional test contains known-good response
information built into the program, rather than stored in response
files, both the response file and the functional test program must
be updated if the board is revised.

You may need to develop a test quickly for just one functional
block and avoid writing stimulus programs or learning
responses for the entire UUT. In this case, the following
procedure will help ensure that the functional test you write will
later integrate well into the functional test for the entire UUT:

1. Make a plan for the stimulus programs you will need
to cover the entire UUT. This usually takes several
hours.

2. Write the stimulus programs needed to test the block
in question.

3-25

3. Write the functional test for the block using the gfi
test command wherever possible.

4. After the test for the block is finished, you can
continue with the process of writing stimulus
programs and learning responses for the rest of the
blocks in the UUT.

Functional Tests That Are Independent of GFI

You can also write functional tests that do not require the use of
stimulus programs and response files. If so, these tests should
also contain the functional test elements shown in Figure 3-8.

Programmed Functional Test Examples 3.5.2.

3-26

The programmed functional tests for each functional block in the
Demo/Trainer UUT are listed in Section 4 of this manual. The
simplicity of these functional tests results from using the gfi test
command and the built-in test functions.

It is tempting to write a functional test without first writing
stimulus programs. However, a penalty is paid for this
approach in two ways: it can actually take longer if stimulus
programs are not created first, since the 9100A/9105A already
has built-in functions to do much of the functional testing once
stimulus programs are created. Second, stimulus programs will
have to be written anyway before GFI troubleshooting can be
used.

The sequence of steps shown in Figure 3-7 will in most cases
give you the best results in the shortest time. Each increment of
programming investment will result in better performance and
productivity.

O

Keystroke Functional Tests 3.5.3.

A UUT may be tested using only 9100/9105A front panel
keystrokes. Keystroke testing also involves each of the four
functional test steps (initialization, stimulation, measurement,
and evaluation) shown previously in Figure 3-8, but the operator
performs these steps rather than having the 9100A/9105A do
them with TL/1 programs. If you wish, these steps can be
stored in keystroke sequences by using the SEQ key on the
operator's keypad.

Each of the fourteen functional blocks in Section 4 has a
"Keystroke Functional Test" figure like the example shown in
Figure 3-9. The purposes of these figures are the following:

® Show the schematic diagram for that functional block.

¢ Show the inputs to the functional block from other
functional blocks.

® Show the outputs of the functional block to other
functional blocks.

¢ Identify the 9100A/9105A measurement and stimulus
devices used to test the block and to identify where those
devices are connected.

¢ Show the expected node response information from
performing the functional test sequence for that block.

Figure 3-9 is a typical example of a Keystroke Functional Test
figure that you will see for each of the functional blocks
described in Section 4 of this manual. In most cases, the
functional blocks to the left of the schematic are those which
provide input to the functional block shown in schematic form.
In most cases, any functional blocks to the right of the schematic
are receiving the outputs of the functional block shown in
schematic form. The arrows show the direction of the signals
between the functional block boxes and the functional block
shown in schematic form.

Notice the left-hand page of Figure 3-9. At the top of the page is
a box labeled CONNECTION TABLE. The left column of this

3-27

Example

Keystroke Functional Test

CONNECTION TABLE

MEASUREMENT CONTROL

NN Lol -

CLOCK U78-33 ure
START UBg-13
STOP uBe-13
ENABLE ure-12

RESPONSE TABLE

CLOCK AND RESET ELK 80286 BUS
MICROPROCESSOR BUFFER
RESET FEMHZ
1 FERDY
READY ADDAESS | VIDSLT
CIRCUIT DECONE TRAH
TVE&HED\’

3-28

Example

AOVANCED VIDEQ DISFLAY

CONTROLLER (avDC) VIDED
PR A R TELK ouT
45V 36 4oL cTAL: 4 BC AT -
= : DADD10
DADDOT [
ADDOE
. DADOOS
DaOD1E| 22 NE JB DADDO4
DAOD11
0ano1n :4 DADD1O .
DADOS -
DA008 ¥ VIDEQ
DADO? I RAM
DADOS ~
papps [@8—_DAboes} | g -
nanoa
DA003
DADDZ
DAOO1
DADDD
cuRsgal_7_ CURSOR
L ank |17 BLANK
Serk L5 EEIR
EvNE | 4T HSYNC
vayne |18 VSYHC I
ura
|
CCLK
| BE 3 L5810
| L500]
_— L _r> iy
1 TELR 22, U70 h2i
TCLK
S Ga 1
|

| RESET

LS GC|

i1
1
.Eg BELECTR

Figure 3-9: Example of Keystroke Functional Test Figure

3-29

3-30

table, labeled STIMULUS, shows what 9100A/9105A device is
used to provide stimulus to the functional block shown in
schematic form and where the connection is made. In the
example shown in Figure 3-9, no stimulus is provided because
this diagram is part of the video circuit and, once initialized, the
video circuit constantly runs with no additional stimulus. In
many of the keystroke functional test diagrams in Section 4, the
STIMULUS column will indicate that the pod or I/O module is
used.

The right column of the CONNECTION TABLE, labeled
MEASUREMENT, shows which 9100A/9105A device is used
to measure circuit response for the Keystroke Functional Test.
The measurement device can be the probe, the pod, or an I/O
module. This column also shows the components or nodes in
the circuit that are to be measured.

When the I/O module is the measurement device and its external
control lines are used, a third column, labeled
MEASUREMENT CONTROL, shows where to connect the
START, STOP, CLOCK, and ENABLE lines.

The RESPONSE TABLE shows the names of the signals to be
measured, the component and pin numbers to be measured, the
corresponding pin numbers used by the I/O module, and the
known-good measurement value for each signal.

Section 4
Functional Block Test and
Troubleshooting Examples

This section is organized into fifteen sub-sections. The first
fourteen sub-sections each contain the following information:

® General discussion of a kind of functional block.

¢ Testing and troubleshooting approaches.

¢ Keystroke testing procedure for Demo/Trainer UUT.

® Functional test program listing for Demo/Trainer UUT.
¢ Stimulus programs and responses for troubleshooting.

. Summary of solution showing all files and programs
needed to test and troubleshoot the functional block.

The last sub-section covers types of circuits not found in the
Demo/Trainer UUT and is therefore organized differently than
the above.

For the purpose of learning how the 9100A/9105A works, each
of the fourteen functional blocks can be considered to be a self-
contained portion of the UUT. The Summary of Solution page
at the end of each sub-section shows all of the files required to
test or troubleshoot that functional block.

Only a subset of all the functional blocks in a UUT needs testing
to determine whether the UUT is good or bad. This is because
testing the major functional blocks indirectly tests the other
blocks as well. (See Section 5 for more details on functional

4-1

testing strategy for a complete UUT). For the Demo/Trainer
UUT, testing the following major functional blocks will be
sufficient for a UUT go/no-go test functional test:

Microprocessor Bus.
ROM.

RAM.

Parallel I/O.

Serial I/O.

Video Output.

The remaining functional blocks covered in this section are
useful for troubleshooting the UUT if it fails the go/no-go UUT
functional test:

Dynamic RAM Timing.
Video Control.

Video RAM.

Bus Buffer.

Address Decode.
Clock and Reset.
Interrupt Circuit.
Ready Circuit.

You will find that the Dynamic RAM Timing, Video Control,
and Video RAM functional blocks come from subdividing the
RAM and Video blocks into smaller-size blocks.

C

Microprocessor Bus

MICROPROCESSOR BUS FUNCTIONAL BLOCK 4.1.

Test Access to the Microprocessor Bus 4.1.1.

The term "test access" refers to the point at which the pod
connects to the Unit Under Test (UUT). In most cases, a
UUT's microprocessor or microcontroller is replaced in its
socket by the pod, but this is not always the case. For example,
if the microprocessor is soldered in, the UUT can be designed to
allow a bus-cycle emulation pod to access the bus through a test
connector.

The test access allows the 9100/9105A pod to perform reads and
writes on the microprocessor bus. The pod can selectively
ignore inputs which normally would go directly to the
microprocessor. Thus, any faults that would stop the
microprocessor can be ignored by the pod, and testing can
proceed as though the microprocessor were in a good circuit and
functioning properly.

The pod uses microprocessor bus emulation as the primary
means of testing and troubleshooting. It can generate stimuli to
the UUT and capture the responses in conjunction with other
9100/9105A stimulus and measurement devices, thereby
providing excellent troubleshooting capability for all
microprocessor signals. The pod can perform basic
microprocessor read and write operations, various stimulus
functions built from multiple reads and writes, and built-in tests
such as bus, RAM, and ROM. The pod also verifies that the
microprocessor power supply is within tolerance, and that all
power supply pins are connected.

A little foresight in the design of test access can make testing
much easier. Here are some general guidelines to facilitate
testing:

¢ Provide clearance around all devices. This allows access
for the pod connectors (to replace the microprocessor or
plug in a test socket), for a component extraction tool (if
components are hard to remove, especially pin-grid array

4-3

Microprocessor Bus

4-4

(PGA) types), and for I/O module clips (especially if
adjacent components must be clipped simultaneously).

Provide some means to access the microprocessor bus if
the microprocessor is soldered in. An additional micro-
processor socket or card edge connector can provide this
access. Consider providing some form of test access even
though the factory or service center may use test fixturing,
since this allows testing in field situations where no test
fixturing is available.

Use resistors to the power supply or ground to establish
static logic levels on unused inputs instead of directly
connecting inputs to power supplies or ground. This
allows the 9100/9105A to drive these inputs.

If there are microprocessor inputs that will force most of
the microprocessor outputs to a high-impedance state,
design the UUT so that the 9100/9105A can drive these
inputs.

If there are microprocessor outputs that cannot be placed in
a high-impedence state, design the UUT so that these
outputs are buffered and the buffer outputs can be turned
off or overdriven by the 9100/9105A.

Allow the UUT clock to be suppressed to permit the UUT
to operate with an external clock.

Ensure that vendors' specifications for load and timing
margins are not violated and, if possible, allow for a
further margin.

Design so that all signals at a ROM chip can be latched by
the I/O module with DATA synchronization.

Pull up all lines carrying data signals to a logic 1 through
resistors.

O

Microprocessor Bus

Considerations for Testing and
Troubleshooting 4.1.2.

Kernel Testing

The combination of the microprocessor, ROM and RAM is
collectively referred to as the kernel. The primary advantage of
Fluke test and troubleshooting equipment for microprocessor-
based UUTs over equipment from other vendors is its ability to
troubleshoot dead kernels.

If any part of the kernel malfunctions, very little else works
properly. One basic strategy is to test the kernel first, then test
the other functional blocks surrounding the kernel.

The 9100/9105A has a comprehensive built-in test for the
unbuffered microprocessor bus. This bus test is a series of
reads and writes at different addresses while monitoring
microprocessor outputs for faults. The bus test is described in
detail in Section 6.2.1 of the Technical User's Manual. With
this bus test, the 9100/9105A can determine stuck or tied lines
on all outputs from the microprocessor bus. During a bus test,
active interrupts or forcing signals that cause the microprocessor
to malfunction will be intercepted by the pod and reported to the
9100/9105A unless they have been specifically disabled with the
podsetup command in TL/1 or the SETUP POD command on
the operator's keypad. The bus test will also report a bad power
supply or an inactive clock.

Figure 4-1 summarizes the major conditions reported by the bus
test. Faults such as stuck bus lines, missing clocks, and low
UUT voltages must be cleared before further testing can
proceed.

Finding the source of bus faults may be complicated by multiple
bus-master and intervening buffers. For example, a buffer may
be loading the bus because its enable line is asserted due to
faulty circuitry back several logic gates from the bus. If there
are several bus masters, it may be unclear where the fault is.
Bus masters may be identified as *masters in the node list. The

4-5

Microprocessor Bus

Signal Group Condition Example Message

Address Lines stuck, tied addr line A9 pod pin 22 stuck high

Data Lines stuck, tied data line D8 pod pin 37 tied
data line D9 pod pin 39 tied
Control Lines stuck, tied control line HLDA pod pin 65 not drivable
Interrupt Lines active interrupt ~INTR pod pin 57 active
Forcing Lines active forcing signal RESET pod pin 29 active
i Clock inactive pod timeout bad UUT clock
| Power Lines out of bad UUT power supply
tolerance

Figure 4-1: Conditions Reported by the BUS TEST

4-6

Microprocessor Bus

N
U *masters identification, combined with independent stimulus
programs for each bus master, assist GFI in backtracing faults
identified on buses.

For more information on *masters, stimulus programs, and
response files, see Section 7 of this manual and Section 5.5 of
the Programmer's Manual.

Basic Bus Cycles

It is often useful to perform a series of reads and writes to verify
proper operation of basic bus cycles. To do this, you need the
address map of the UUT. You can verify bus-cycle operation
with reads from and writes to RAM, ROM, or other memory-
mapped VLSI devices such as PIAs, DMA controllers, SCSI
controllers, and UARTs. If your UUT's microprocessor allows
transfers of different data widths (byte, word, long word),
transfers with these different data widths should be verified.

U If reads do not return the correct data when no major bus faults
are indicated by BUS test, try the built-in RAM test or ROM
test. RAM test checks the ability to read and write all RAM cells
specified in the address range. ROM test checks the ability to
read from ROM and verifies the ROM signature. Other kernel-
related functional blocks, such as Address Decode, Bus Buffers,
or Ready circuitry should also be tested, as described later in
Section 4 of this manual.

Synchronization Modes

When you are troubleshooting faults related to bus cycles, it is
useful to synchronize the probe or I/O module to pod operations.
The pod itself can be synchronized to different parts of the bus
cycle that may be appropriate for a particular test. For example,
a microprocessor with multiplexed address and data will output
the address only during the first part of a bus cycle. To test for

4-7

Microprocessor Bus

address faults, an I/O module or the probe can be synchronized
to the address using these TL/1 sync commands:

sync device "/pod", mode "addr"™
sync device "/modl"™, mode "pod"

or from the operator's keyboard using the SYNC key:
SYNC I/0 MOD 1 TO POD ADDR

With the above synchronization, the I/O module can capture
address or other information in functional blocks related to the
address. In a similar way, the probe or I/O module can be
synchronized to data, or to other microprocessor-specific bus-
cycle phases implemented by the pod.

Other Microprocessor Cycles

4-8

Other microprocessor cycles may be exercised as part of the
microprocessor functional block, such as interrupts, bus
exchanges, DMA transfers, or coprocessor cycles. Usually,
however, implementation of these cycles involves circuitry that
is complex enough to be partitioned separately. Here are a few
considerations to keep in mind when testing:

¢ Interrupts are reported by the pod as "active interrupt
lines". When a RUN UUT command is entered at the
operator's keypad, control is returned to the
microprocessor. The operator should be sure that the
software needed to set interrupt priorities and handle
interrupts is present so that RUN UUT operates properly.
Some designs employ a watchdog timer, which asserts a
non-maskable interrupt or reset unless the microprocessor
performs a write within a certain period of time. When
you use pod breakpoints, the watchdog timer should be
disabled, the pod should be set up to ignore the watchdog
timer output, or software should be written to handle the
interrupt.

Microprocessor Bus

Bus Exchanges take place when the microprocessor
gives control of its bus to a requesting component. Pods
allow this capability to be enabled or disabled. When
enabled, the pod will grant bus requests just as the
microprocessor would. The pod may appear to take an
abnormally long time to perform certain tests, such as
RAM test, if other components take control of the bus or if
a fault condition causes bus requests. Disabling bus
requests will command the pod not to grant the bus request
and will cause bus requests to show up as forcing signal
conditions. If the RUN UUT command is entered at the
keypad, control is returned to the microprocessor and the
bus request line will be re-enabled. Further
troubleshooting with RUN UUT may require that the line
be physically disabled.

DMA controllers are integrated with some
microprocessors, such as the 64180. The DMA channels
operate semi-autonomously and interact with the bus
exchange capability. Cautions similar to those used with
bus exchanges should be used for DMA channels.

Dynamic RAM Refresh capability is included on some
microprocessors, such as the Z80 and the 64180. At
regular intervals, a refresh cycle is performed and an
address is placed on the address bus. The Z80 and 64180
have refresh signals (RFSH and REF, respectively) which
indicate when refresh activity occurs. The frequency of
these signals may be monitored with the probe to
determine if refresh is working properly.

Coprocessors work in conjunction with some 16- and
32-bit microprocessors. These coprocessors usually have
a unique set of signals which control the transfer of data
with the main processor. Inputs are called status lines and
may be read and reported by the pod. Outputs are called
control lines and may be written to check drivability or to
send information to the coprocessor.

4-9

Microprocessor Bus

Other Input and Output

There are other types of inputs and outputs specific to each
microprocessor which do not fall into the four basic
classifications, address, data, control, and status. These are
classified as miscellaneous and include signal types such as
bit/parallel, serial, and analog I/O. Each pod treats these lines in
a manner appropriate to the specific microprocessor. Refer to
the particular pod manual for information on how to handle these
signal types.

Microprocessor Bus Example 4.1.3.

The Demo/Trainer UUT uses an 80286 microprocessor, which
has a 16-bit data bus and a 24-bit address bus. The
Demo/Trainer UUT uses only the least significant 20 bits of the
address bus.

The 80286 microprocessor remains in the UUT at all times, so
the Demo/Trainer UUT includes a test access socket to provide
access to the microprocessor bus. Most of the lines in the test
access socket are directly connected to the microprocessor,
although a few lines such as HOLD and HOLDA are buffered
,, with three-state buffers. The test access switch, S5, selects
1 either the 80286 microprocessor in the pod or the 80286
microprocessor on the UUT to control operation of the UUT.

Keystroke Functional Test 41.4.

Use the BUS TEST key to enter the following command:
TEST BUS AT ADDR 0
The above command is the entire procedure; the Microprocessor

Bus functional block (Figure 4-2) can be tested fully with this
single test.

Microprocessor Bus

The microprocessor bus test is built-in. It is convenient to run
first because:

¢ It's easy.
® It's fast.
® It provides excellent diagnostic information.

. A bus fault will cause almost all other functional tests to
fail, so it should be tested first.

The bus test uncovers all drive problems that may occur at the
microprocessor socket. These faults will cause other tests to
fail, but the diagnostics for bus faults are best with BUS TEST.
If a fault is uncovered, a message will be displayed to the
operator. See Appendix F in the Technical User's Manual for a
list of fault messages.

4-11

Microprocessor Bus

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SOCKET

RESPONSE TABLE

READY INTERAUPT
CIRCUIT ELOCK AN AESET CIRCUIT
i I} -
T READY CLK | RESET INTR
1

4-12

Microprocessor Bus

READY |63 M IO
ok (31 =0
RESET 29| B1
. LA7S 4 con/TNTA
10K BUSY 54 BUEY 223 |17 e BUS
F— AZZ B EE
- o D FES
ERRDR 83} FRROR 421 (10 BUFFER
— A20 |41 S
PEACK B |FEack s1a (48 418
TOER 88 | e A18 (43 AiB
S Lotk BB TocK 217 14 AL7
A16 |18 AiB
PEREG B4 pppeg]
45 _1.?\3\8, 2 Rao
1on 330
A15
~ Al 45V
a13
M1 58 | yut a1 4
| All SwWa-3
$:|77 ALD
330 A09 ang 3
Cl | A0E AcH
R |
4
SW2-4
13
A07
NTR [A0B
87 1uta A08 ADS
a04 AD4
4 A03 I3
SH3-4 a02 SWa-5
AQ1
13 a00 1z
‘BHE
5
SW2-6
+5Y B
. . |
HLDA 85y pa 015 |54 D15 ae
HoLD 184 o p o1« [48 D14 SWa-7
o EE]
o1z S pazl oz 7
o131 43 D11
010 ;;
) 009
. SWi-G ygy_ 300 .ay pos |37 o
eV B g1t B2 ey
3 | GnD
35 | grp
S| N
ooy (S0 o7
7 bos |48 00
52 -ap oos |48 oos DoS
3 1 cs Ooa 44 D04 La
SWI-3 oo3 (421 oo3 SH3-1
L0a7uF poz f 401 00000 | ooz §
44 po1 |28 . dow | 18
. | poo |28 noo
L |

Microprocessor Bus

Programmed Functional Test 4.1.5.

4-14

The Demo/Trainer UUT is determined to be good if functional
tests for the Microprocessor Bus, ROM, RAM, Parallel 1/O,
Serial I/O, and Video Output functional blocks all pass. In order
to make the testing as efficient as possible, the buffered bus,
address decode, and ready circuitry should be exercised early in
the testing. Furthermore, this testing should happen quickly,
minimizing the amount of clipping of I/O modules to
components.

To meet these goals, the Microprocessor Bus functional test
program, test bus, checks the microprocessor bus up to the
buffers and also performs an access to every decoded address
space (such as ROM, RAM, or Video I/O). These accesses
indirectly check the Buffered Bus, Address Decode, Ready, and
Interrupt Circuit functional blocks. If a ready or active interrupt
problem exists, these accesses to the decoded address spaces
will result in an improper ready or active interrupt condition that
can be detected by the test.

The test_bus program also performs a check for bus contention.
Bus contention occurs when a component continually outputs
onto the data bus and it is usually caused by faulty enable inputs
into a component. The test bus program detects bus contention
by reading at a spare address location, which is decoded and can
be read from but has no component located at that address to
output data onto the data bus. In normal operation, only high
bits (logic 1s) are returned on the data bus when the spare
address is read. When bus contention drives data bits low, the
read at the spare address will detect the problem. In order to
detect bus contention that drives data bits high, the test bus
program writes all-zero data to RAM and then reads the RAM.
If the data read is not all-zero, either the RAM is bad or there is
bus contention. To make sure the problem is bus contention, the
test _bus program reads from two other components on the data
bus that are decoded separately. The test bus program uses the
ROMs from bank zero and the ROMs from bank 1. If both
ROM banks read zero data correctly, the problem is assumed to
be a RAM problem (when bus contention occurs, most of the
components on the bus will fail). When both ROM banks read

O

Microprocessor Bus

zero data correctly, the test_bus program concludes that the
problem is not bus contention and leaves further fault isolation to
a later test.

If a bus contention problem is detected, a separate bus
contention test program called tst_conten is executed (see
Appendix C for a listing of this program). The tst_conten
program tests the enable lines for each component that is
connected to the data bus. All other information about good or
bad data and address lines is ignored by the bus contention
program.

The entire test_bus functional test runs quickly, but it detects
most kernel faults not in the RAM or ROM components.

program test_bus

! FUNCTIONAL TEST of the Microprocessor Bus.

! This program tests the unbuffered microprocessor bus, performs an

! access at each decoded address of the buffered bus, and checks the

! data bus for bus contention (where a component cutputs onto the data

{ bus at incorrect times). If bus contention is detected then the

! program TST CONTEN is executed. TST CONTEN checks for incorrect i
! enable line conditions on all the components on the buffered data bus.!

1 1
1 1
1 1
1 1
1 1
i 1
1 1
1 1
! 1
{ TEST PROGRAMS CALLED: i
! tst_conten (addr, data bits) Test for bus contention on
! the data bus by checking the
t enable lines of all devices
t on the data bus. !
! 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1

! Local Constants:

2ERO_AT ROMO Address of zero data in RCMO
ZERO AT ROM1 Address of zero data in RCM1
IO _BYTE 1/0 BYTE address specifier

MEM WORD MEMORY WORD address specifier !

! Local Variables Modified:
X value returned from a read

! Main Declarations !
IR R R R R R R R R RN RN NN

declare numeric ZERO AT ROMO = $E002A !Location in ROMO where 0 exists
declare numeric ZERO AT ROM1 = $F0022 !Location in ROM1 where 0 exists

4-15

Microprocessor Bus

4-16

! Setup Statements

podsetup ‘enable ~ready' "on"

podsetup 'report forcing' "on*

IO BYTE = getspace space "i/o", size "byte"

MEM WORD = getspace space "memory", size "word"
! Test the Unbuffered Microprocessor Bus.

testbus addr 0O

! Test the Extended Microprocessor Bus and Address Decoding.

setspace (MEM WORD)

read addr O ! RAM BANK O

read addr $10000 ! RAM BANK 1

write addr $20000, data O ! VIDEO RAM {write only)
read addr $30000 ! INTERRUPT POLL

read addr $E0000 ! ROM BANK 0

read addr $F0000 ! ROM BANK 1

setspace (IO_BYTE)

read addr O ! VIDEO SELECT

read addr $2000 ! RS232 SELECT

read addr $4000 ! PIA SELECT

! Test for Bus Contention driving lines low by accessing unused address space

setspace (MEM WORD})
X = read addr $50000 ! SPARE-2 ADDRESS SPACE
if x <> $FFFF then
execute tst conten($50000, cpl(x) and SFFFF)
return
end if

! Test for Bus Contention driving lines high by reading and writing RAM
! If failure then check for bad RAM by reading zeros from 2 other devices.

write addr 0, data 0 ! WRITE and READ RAM addr O
X = read addr 0 I If fails then check for bad RAM
if x <> 0 then ! by reading 0's at ROMO and ROML

if (read addr ZERO AT ROMO) <> 0 then
if (read addr ZERO_AT_ROMl) <> 0 then
execute tst_conten(0, x)
return
end if
end if
end if

end program

O

Microprocessor Bus

Stimulus Programs and Responses 4.1.6.

Stimulus programs are TL/1 programs that are executed by GFI
for the purpose of troubleshooting faulty circuits. A stimulus
program response file should be associated with each stimulus
program in order to store the known-good response for each
node to be stimulated by the stimulus program. In this
functional block, the microprocessor is the only component and
its outputs are stimulated in three groups: address lines, data
lines, and control lines.

Figure 4-3 is the stimulus program planning diagram for the
Microprocessor Bus functional block. It shows three stimulus
programs that are used to exercise the outputs in the
microprocessor functional block. These stimulus programs (and
their associated response files by the same name) exercise and
characterize nodes to be measured in the Microprocessor Bus
functional block and in other functional blocks as well.

There are several rules for stimulus programs and response files.
One is that only outputs are characterized. Another is that data
must be characterized while flowing in only one direction.

Therefore, the data_out stimulus program measures only data
coming out from the microprocessor. Other stimulus programs
will measure data coming in to the microprocessor.

After the stimulus program planning diagram, the stimulus
programs, and the response files, there is a summary page in the
form of a UUT Directory. It shows the entire set of stimulus
programs, response files, and other files needed to perform
testing and troubleshooting on this functional block. The
summary page also shows where each of the stimulus programs
and response files can be found in this manual. You will notice
that each stimulus program and its associated response file (with
the same name) are shown in only one location, although the
pair will often be used with more than one functional block.

Microprocessor Bus

Stimulus Program Planning

PROGRAM: CTRL_OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS SYNG

READY INTERRUPT
CIRCUIT CLOCK aND RESET CIRCUIT
s |51 READY CLK |RESET INTR

4-18

Microprocessor Bus

COO/TNTA|
+5 —
A231 7 e aus
aze [8 -
8 ac FF
AZ1 (1D NG Bu ER
20 [11 NE -
= Al9 2 AL
A18 = A8
a817 _4_
A16 |45
B . i
i ! |
5V 1R7ERS D] | |
10K 330 | |
| | SWi-a
L | 15 4616 .~ 11 A15
~ Atd 147 Ald +5V
| 413 (48 A13
NMI 59 1 I
;ﬂ I A12 [49 A1Z 4
I Al1 |20 Al aWEos
a10 [24 A10
apa [22 205 AT k
a08 [23 ADE A0E
SWE-4
13
NTH
I 57 | intR A0S
. ﬂ?‘_.__l
12
&
SWE-5
+5v 11
HLDa 88|y p, 015 (B4 015 | 10
_HOLD _ Balpgp Dus (48 D14 | \EWa-7
naa [AZ 013
nes [45 01z o:2 7
ey 43 011
nap [A1 010 SWE-8
0 nos [29 008 oog B .8
_ wsv 300 ey noa |27 GEE] 008
+5v 5 62 | 1my
GND
GND
GND
ooz
- DOE
o B2leap Dos oos ,
Ca ooa l
g 0o SWi-1
L 047UF poz 40
Do4 16
Doo
L S

Microprocessor Bus

program addr out

Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
!
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-~enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to !
resynchronize the bus controller and the pod. i
1

TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!
bus controller that is totally!

separate from the pod. 1In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}
devname Measurement device

Global Variables Modified:

1
1
1
1
Local Variables Modified: !
1
1
1
recover times Reset to Zero !

Trprrtrerrrrrrr et Rrt I I rIIIIITI TN ELIIIIOIIIIIIIILIILIILIILIY

declare global numeric recover times

(continued on the next page)

Figure 4-4: Stimulus Program (addr_out)

Microprocessor Bus

trerrrrrrrrrp R ELLRILEIELELLIILE LI LI RO EILIOLI LI LI IO LITLEIEIIT I LISLTIT RIS RITTIEIIIOLILILIGEITTILILIIILIILIILIIOLY

! FAULT HANDLERS: 1
RS R RN R N R N R RN R N R N R R R R R S S S R R R RN NS

handle pod_timecut_enabled line
recover ()

end handle

handle pod timeout recovered
recover{)

end handle

trrrrrrrrrrrrrrr IR r P LR LT LT TR T ITIRIIIITIITILIOLIIIIEILRILITIEITIIISLISELITIIITIIIGIIELITILILILIILILIYL

recover times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print *Stimulus Program ADDR OUT"

! Set addressing mode and setup measurement device.

podsetup ‘*enable ~ready' "off"
o podsetup ‘report power' "“off"
§ podsetup 'report forcing' "off"
U podsetup 'report intr' "“off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup 'report control' "off"
mem byte = getspace space "memory", size "byte"
setspace (mem_byte }
reset device devname
sync device devname, mode “"pod”
sync device "pod"”, mode "addr"

! Present stimulus to UUT.

arm device devname ! Start response capture.
rampaddr addr 0, mask $1F
rampaddr addr 0, mask $1FO
rampaddr addr 0, mask $1F00
rampaddr addr 0, mask $1F000
rampdata addr $20000, data 0, mask $FO
rampaddr addr $30000, mask $F00
rampaddr addr $E0000, mask $1F000
readout device devname ! End response capture.

podsetup ‘enable ~ready' *on"
end program

(' ™ Figure 4-4: Stimulus Program (addr_out) - continued

4-21

Microprocessor Bus

STIMULUS PROGRAM NAME: ADDR_ OUT
DESCRIPTICN: SIZE: 1,194 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ule-19 I/0 MODULE DEBE8 10 TRANS
Ule-l6 PROBE 4768 10 TRANS
Ulé6-16 I/0 MODULE 4A68 10 TRANS
Ule-15 PROBE 421D 10 TRANS
Ul6~15 I/0 MODULE 421D 10 TRANS
Ul6-12 PROBE BFDC 10 TRANS
Ulé6-12 I/0 MODULE BFDC 10 TRANS
Ulée-9 PROBE 1138 10 TRANS
Ule-9 I/0 MODULE 113E 10 TRANS
Ule-6 I/0 MODULE 8F00 10 TRANS
Ul6-5 I/0 MODULE 8300 10 TRANS
Ule-2 I/0 MODULE B300 10 TRANS
U2-19 I/0 MODULE AED2 10 TRANS
U2-16 I/0 MODULE 88CD 10 TRANS
U2-15 I/0 MODULE 8296 10 TRANS
U2-12 1/0 MODULE 3B3%0 10 TRANS
Uz2-9 1/0 MODULE O09E8 10 TRANS
U2-6 I/0 MODULE O0OD9C 10 TRANS
U2-5 I/0 MODULE 56D3 10 TRANS
U2-2 I/0 MODULE 9CA7 10 TRANS
Ul4-1 PROBE 60CD 10 TRANS
Ul4-1 I/0 MODULE 60CD 10 TRANS
Ul4-34 PROBE DEB8 10 TRANS
Ul4-34 I/0 MODULE DEB8 10 TRANS
U14-33 PROBE 4A68 10 TRANS
U14-33 I/0 MODULE 4A68 10 TRANS
U14-32 PROBE 421D 10 TRANS
Ul4-32 I/0 MODULE 421D 10 TRANS
Ul4-28 PROBE BFDC 10 TRANS
Ul4-28 I/0 MODULE BFDC 10 TRANS
Ul14-27 PROBE 113E 10 TRANS
Ul4-27 I/0 MODULE 113E 10 TRANS
Ul4-26 PROBE 8F00 10 TRANS
Ul4-26 I/0 MODULE 8F00 160 TRANS
Ul4-25 PROBE 8300 10 TRANS
Ul4-25 I/0 MODULE 8300 10 TRANS
Ul4-24 PROBE B300 10 TRANS
Ula-24 I/0 MODULE B300 10 TRANS
U14-23 PROBE AED2 10 TRANS
U14-23 I/0 MODULE AED2 10 TRANS
Ul4-22 PROBE 88CD 10 TRANS
U14-22 I/0 MODULE 88CD 10 TRANS
Ul4-21 PROBE 8296 10 TRANS
Ul4-21 I/0 MODULE 8296 10 TRANS

(continued on the next page)

Figure 4-5: Response File (addr_out)

4-22

Microprocessor Bus

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE

3B920
3B90
09E8
09E8
0oDoC
0boc
56D3
56D3
9CA7
9CA7
8E87
8E87
A70C
A70C
3951
3951
3951
3951
8E87
A70C
3951
3951
60CD
8724

PR B REBRRRP R RS e e e

(= eleReloNeNeoNeoNoNoNoNoNoNoNoNoNoNolNoNoNoNolNol el

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-5: Response File (addr_out) - continued

4-23

Microprocessor Bus

program data_out

STIMULUS PROGRAM for data bus buffers U3 and U23.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
1 1
1 1
1 1
! 1
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover() program is executed to

! resynchronize the bus controller and the pod. !
1 i
1
1
1
1
1
i
1
1
1
1
b
1
1
1
1
1
1
1

TEST PROGRAMS CALLED: !
recover {) The 80286 microprocessor has al!
bus controller that is totally!

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program 1

resynchronizes the pod and the!

bus controller. !

! GRAPHICS PROGRAMS CALLED:
{none}
devname Measurement device

Global Variables Modified:

1

1

1

1

Local Variables Modified: !
1

1

1

recover times Reset to Zero !

declare global numeric recover_times

(continued on the next page)

Figure 4-6: Stimulus Program (data_out)

Microprocessor Bus

handle pod timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover times = 0
! Let GFI determine the measurement device.

if (gfi control} = "yes" then
devname = gfi device
else
devname =
end if
print "stimulus Program DATA OUT"

“/modl"

! Set addressing mode and setup measurement device.

podsetup 'enable

~ready' "off"

podsetup 'report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' “off"
podsetup 'report address' "off"
podsetup 'report data' "off"
podsetup 'report control' "off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode “data"

! Present stimulus to UUT.
arm device devname ! Start response capture.
rampdata addr 0, data 0, mask S$FF
rampdata addr 0, data 0, mask SFF00

readout device devname ! End response capture.

podsetup ‘enable ~ready' "on"
end program

Figure 4-6: Stimulus Program (data_out) - continued

4-25

Microprocessor Bus

STIMULUS PROGRAM NAME: DATA OUT
DESCRIPTION:

Response

Node Learned Async Clk
Signal Src With SIG VL IVL
U3-11 PROBE AAG6L 10
U3-11 I/0 MODULE AA6Gl 10
U3-12 PROBE 99DF 10
U3-12 I/0 MODULE 99DF 10
U3-13 PROBE 8793 10
U3-13 I/0 MODULE 8793 10
U3-14 PROBE E618 10
U3-14 I/0 MODULE E618 10
U3-15 PROBE 8793 10
U3-15 I/0 MODULE F513 10
U3-l16 PROBE 4FFB 10
U3-16 I/0 MODULE 4FFB 10
U3-17 PROBE 3600 10
U3-17 I/0 MODULE 3600 10
U3-18 PROBE B259 10
U3-18 I/0 MODULE B259 10
U23-11 I/0 MODULE 96EC 10
U23-12 I/0 MODULE 725B 10
U23-13 1/0 MODULE ESED 10
U23-14 I/0 MODULE 5BEO 10
U23-15 I/0 MODULE 7E25 10
U23-186 I/0 MODULE 8SEA 10
U23-17 I/0 MODULE 77C7 10
U23-18 1/0 MODULE 6ERBE 10
Ul4-51 PROBE 6EBE 10
U14-51 I/0 MODULE 6ERE 10
Ul4-49 PROBE 77C7 10
U14-49 I/0 MODULE 77C7 10
U14-47 PROBE 85FA 10
U14-47 I/0 MODULE 85EA 10
Ul4-45 PROBE TE25 10
U14-45 I/0 MODULE 7E25 10
Ul4-43 PROBE SBEO 10
U14-43 I/0 MODULE 5BEO 10
Ul4-41 PROBE ESED 10
Ul4-41 I/0 MODULE E5SED 10
U14-39 PROBE 725B 10
U14-39 I/0 MODULE 725B 10
Ul4-37 PROBE 96EC 10
U14-37 I/0 MODULE 96EC 10
U14-50 PROBE B259 10
Ul4-50 I/0 MODULE B259 10
Ul4-48 PROBE 3600 10

4-26

SIZE: 982 BYTES

Data
Counter Priority
Mode Counter Range Pin

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

(continued on the next page)

Figure 4-7: Response File (data_out)

Microprocessor Bus

I/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE

3600
4FFB
4FFB
F513
F513
E618
E6l8
8793
8793
99DF
99DF
AA61
AA6L

RPRRPHRBRPEBSBPRE B

COO0OO0OOQOCOCOOO0OOOOQ

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-7: Response File (data_out) - continued

4-27

Microprocessor Bus

program ctrl outl

STIMULUS PROGRAM for bus controller, UlS & uP ctrl lines.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
1 1
1 1
1 1
I 1
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re—enable the READY input !
! to the pod. The B0286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover () program is executed to !
! resynchronize the bus controller and the pod. !
i 1
i
!
1
1
1
1
1
1
1
1
1
1
1
1
1

! TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!

bus controller that is totally!

separate from the ped. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:
recover times Reset to Zero

handle pod timeout enabled line
recover ()
end handle

(continued on the next page)

Figure 4-8: Stimulus Program (ctrl_out1)

4-28

Microprocessor Bus

handle pod_timeout recovered
recover ()

end handle

handle pod_timeout no_clk

end handle

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program CTRL_QUT1"

! Set addressing mode and setup measurement device.

podsetup ‘'enable ~ready' "off"

podsetup 'report power' "off"

podsetup 'report forcing' "off"

podsetup ‘'report intr' "off"

podsetup 'report address' "off"

podsetup 'report data' "off"

podsetup ‘report control' "off"

io_byte = getspace space "i/o", size "byte"
mem word = getspace space “memory"”, size "word"
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "addr"

old cal = getoffset device devname

setoffset device devname, offset (1000000 - 42)

! Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem_ word)
rampaddr addr $E0000, mask $1E
rampdata addr $50000, data 0, mask SF
setspace (io_byte)
rampaddr addr 0, mask $5F00
rampdata addr $2000, data 0, mask S$F
readout device devname ! End response capture.

setoffset device devname, offset old cal

podsetup ‘enable ~ready' "on"
end program

Figure 4-8: Stimulus Program (ctrl_out1) - continued

4-29

Microprocessor Bus

STIMULUS PROGRAM NAME: CTRL OUT1
DESCRIPTION: SIZE: 267 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
Ul4-5 PROBE 5632 10 TRANS
Ul4-5 I/0 MODULE 5632 10 TRANS
Ul4-4 PROBE ECCF 10 TRANS
Ul4-4 I/0 MODULE ECCF 10 TRANS
Ul4-66 PROBE B70D 10 TRANS
Ul4-66 I/0 MODULE B70D 10 TRANS
Ul4-67 PROBE ODF0 10 TRANS
Ul4-67 I/0 MODULE ODFO 10 TRANS
U45-8 1/0 MODULE 92FB 10 TRANS
Ul5-16 I/0 MODULE 2BES 10 TRANS
U57-8 I/0 MODULE 9118 10 TRANS
U22-5 1/0 MODULE B70D 10 TRANS
U22-6 I/0 MODULE ODFO 10 TRANS

Figure 4-9: Response File (ctrl_out1)

4-30

Microprocessor Bus

Summary of Complete Solution for
Microprocessor Bus 417.

The entire set of programs and files needed to test and GFI
troubleshoot the Microprocessor Bus functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Microprocessor Bus)
Programs (PROGRAM):
TEST_BUS Functional test Section 4.1.5
ADDR_OUT Stimulus Program Figure 4-4
DATA_OUT Stimulus Program Figure 4-6
CTRL_OUT1 Stimulus Program Figure 4-8
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
ADDR_OUT Figure 4-5
DATA_OUT Figure 4-7
CTRL_OUT1 Figure 4-9
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST " Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-31

Microprocessor Bus

(This page is intentionally blank.)

4-32

ROM

o

ROM FUNCTIONAL BLOCK 4.2

Introduction to ROM 4.2.1.

The typical ROM block consists of the ROMs, an address path
from the microprocessor to the ROMs, a data path from the
ROM:s to the microprocessor, and a ROM-select scheme. There
are often hardware buffers separating the address and data paths
from the microprocessor and ROMs; your UUT may or may not
include these buffers. A simplified diagram of a typical ROM
functional block is shown in Figure 4-10.

Figure 4-10 shows the microprocessor's Read/Write strobe as
an input to the ROM-select circuitry. Many UUTs use the
Read/Write strobe to make sure the ROM is selected only during
Read cycles. This prevents potential data-bus contention
between the ROM and the microprocessor during erroneous
Write cycles to the ROM's address space.

Considerations for Testing and
Troubleshooting 4.2.2,

Testing ROM

To test ROM thoroughly, every data bit read from the ROM
(i.e., every cell in the ROM) must be verified. Of course, you
could compare the contents of every location with known-good
contents, but this would be slow and would require that the
9100A/9105A store the known-good contents of all ROM chips.
In practice, it is easier and faster to read every ROM address,
compress the data into a CRC signature, and compare this
signature with the signature from a known-good UUT.

The 9100A/9105A’s built-in ROM test performs the operation
described above. The test is first used to capture the signature

4-33

ROM

4-34

Micro-
processor

'\ Data
< Data Bus A Bufter
'\ Address r\
Address Bus I/ Buffor I/
L N
b1 Decode ROM Chip Select
R/W Strobe & Select

ROM(s)

Figure 4-10: Typical ROM Block

ROM

response of a known-good UUT. Then, the test can be
performed on a suspect UUT.

Refer to Section 6.2.3 of the Technical User’'s Manual for more
information about the built-in ROM test.

ROM-Test Diagnostic Messages and Troubleshooting
Techniques

If the built-in ROM test finds a fault, one of several diagnostic
messages will be displayed. Figure 4-11 summarizes the types
of conditions reported, with example messages. Here are some
details about the various types of messages:

Incorrect Signature

This means that the ROM test could not identify the data or
address lines at fault. It may indicate that the ROM chip itself is
bad or that the wrong ROM chip is inserted. However, it could
also indicate faulty ROM-select circuitry, especially if the
circuitry allows ROM to be selected over only part of the proper
address range. This type of fault would allow the test to read
enough addresses to generate a signature, albeit an incorrect one.
Here are some troubleshooting tips for this situation:

® Check that the correct ROM chip is plugged in.

® Perform the test on a known-good UUT with an I/O

module clipped over the ROM chip. Write down the
signatures of the individual lines from the I/O module.

¢ Perform the test on the suspect UUT, again with the I/O
module clipped over the ROM chip.

¢ Compare the signatures for the individual lines. Trace any
faulty inputs back toward the microprocessor, giving
priority to tracing faults in chip-select lines and then in
address lines.

4-35

ROM

Signal Example
Group Fault Message
ROM Chip bad data cells read incorrect sig XXXX expected YYYY

ROM-Select Lines

Data Lines

Address Lines

Undetermined
Fault

open or stuck

open or stuck

tied

open or stuck

tied

read incorrect sig XXXX expected YYYY
all ROM data bits stuck iow

all ROM data bits stuck high

data line <name> stuck high
data line <name>stuck low

data line <name> tied to data line <name>

address line <name>stuck

address line <name>tied to address line <name>

read incorrect sig XXXX expected YYYY

Figure 4-11: Conditions Reported by ROM Test

4-36

ROM

All Data Bits Stuck High or Low

This means that the ROM test found all ones or all zeroes on
every data line throughout the test. Most probably, it means that
the ROM chip is not being properly selected, that the ROM chip
is missing (or unprogrammed), or that an intervening bus buffer
is faulty.

To troubleshoot these faults, first check that the ROM chip is
present and that it is the right part. If so, you can then trace the
ROM-select path back to the microprocessor. Use a
9100A/9105A read operation on the address at which the failure
occurred as a stimulus for the probe or I/O module. If the ROM-
select path is good, verify that the address and data buffers are
good.

Data or Address Line Stuck High, Stuck Low, or Tied

When an individual address or data line is at fault, use the probe
to trace from the ROM socket back to the microprocessor and
compare each node response with the known-good response.

If the faulty line is an address line, synchronize the probe to
address and stimulate the line with the STIM key using the
TOGGLE ADDR command on the operator's keypad. Use the
LOOP key while probing to verify both low and high levels at
each point on the address line until the fault is isolated.

If the faulty line is a data line, synchronize the probe to data, run
a ROM test and press the LOOP key to repeat the ROM test
while probing. Again, look for both low and high levels until
the fault is isolated.

4-37

ROM

Additional Considerations

4-38

Here are some additional suggestions to consider when testing
and troubleshooting ROM:

Multiple ROM Chips: If you have more than one
ROM chip on your UUT, test each chip separately. This
will speed the troubleshooting process if a fault is found.

If there is more than one ROM chip on the same data bus
(or, in systems wider than 8 bits, on the same portion of
the data bus) be careful that an erroneously enabled output
buffer of one ROM is not corrupting the test results for
another ROM. For example, consider an 8-bit
microprocessor system with two ROM chips, A and B, in
which chip A's output-enable input pin is tied low (a
fault). Chip A will pass its ROM test, because the data in
the ROM can still be read with the output-enable line tied
low. ROM chip B, however, will fail its test with an
incorrect-signature fault, even though there are no faults
directly associated with chip B. When chip B is read by
the test, the fault on chip A causes both ROMs to contend
for the data bus, resulting in an incorrect signature. See
the microprocessor bus functional block for suggestions
on how to check for bus contention.

Unprogrammed ROM: Be sure that the ROM being
tested has been programmed. An unprogrammed ROM
may result in an "all ROM data bits stuck high" or an "all
ROM data bits stuck low" message during a ROM test.

Data Tied to Address: If a ROM test results in a bad
signature, it is a good idea to make sure that a data line is
not tied to an address line. You can do so by clipping an
I/O module to the ROM chip that produced the incorrect
signature.

If address line or data line failures are identified by a ROM
test but not by a BUS test, the fault is on the ROM side of
the address or data buffers.

ROM

® Proper Sync Mode: Generally, the data sync mode
should be used to trace back faults in the ROM-select path,
even though the ROM-select signal may be created from
address lines. This is because the ROM-select signal
should normally be asserted at the time the microprocessor
reads in data from the ROM. This is also normally the
situation for probing the address signals at the ROM
socket.

ROM Example 4.2.3.

The operating system code for the Demo/Trainer UUT is stored
in four 32K x 8 EPROMs, U27, U28, U29, and U30, shown in
Figure 4-3. Since a 16-bit system is used, ROM is organized as
64K x 16 bits. The ROMO bank covers the even addresses
E0000 through EFFFE and is contained in U29 and U30. The
ROM1 bank covers the even addresses FOO00 through FFFFE
and is contained in U27 and U28. Both banks can only be
accessed in 16-bit mode. IAOQ1 is connected to AQ on the
ROMs, and the least significant address bit, IAOO, is not
connected to ROM. IAQO is always low in word accesses.
A20-A23 are not used. At reset, 80286 code execution begins at
the reset address (FFFFF(0). ROM accesses do not require wait
states.

Keystroke Functional Test 4.24.

Use the ROM TEST key to enter the following commands,
and compare the measured signature with the response table
in Figure 4-12.

GET SIG ROM REF U29 ADDR E(0000 UPTO EFFFE ...
. DATA MASK FF ADDR STEP 2
(ADDR OPTION: MEMORY WORD)

4-39

ROM

4-40

The measured signature (shown on the operator's display)
should be 8EGE.

GET SIG ROM REF U30 ADDR E(0000 UPTO EFFFE
. DATA FF00 ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be F387.

GET SIG ROM REF U27 ADDR F0000 UPTO FFFFE
. DATA FF ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be F387.

GET SIG ROM REF U28 ADDR F0000 UPTO FFFFE
. DATA FF00 ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be 8E6E.

ROM

(This page is intentionally blank.)

4-41

ROM

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST AGUESS SOCKET

RESPONSE

READY
CIRCUIT

BUS
BUFFER

ADDRESS =
DECODE _

4-42

ROM

27856
AD: 30 [0
ADZ 8],y
A03 B 4n
Al 7] a3
A0S 6|44
A0E 5,5
a07 a AB
508 3|~
LU B Y-)
A 241 a9
A 21) n10
L)
A 2| a1z
Ala 26 A1
41527 a4
+5Y] ypp
- T
S
— o
| uzg
I3 =
\§w4—3 Wi-2 27258

a0 oo A4 008
wi n: 221008
w2 oo |A3_I1010
15 1011

v oi[Ee_ioiz
o= [A7__1IDa3

os [1B__IDi4
o7 180 1045

14 15

Dln{}-)))hhhhhh
mimfe e e e e e dp s
T s WD

Ls32

4

5

-
AOMIAOY _uag
HOMOADY .
DATA & ADORESS BUS

AOHT

Figure 4-12: ROM Functional Test

4-43

ROM

Programmed Functional Test 4.2.5.

4-44

The test_rom program is the programmed functional test for the
ROM functional block. It uses the testromful command to test
the ROMs. This command will generate one of seven built-in
fault conditions if testromful fails. The test_rom program then
handles all seven built-in fault conditions and categorizes them
into one of two new fault conditions called rom _comp for a
component failure or rom_address for an address failure. The
seven built-in testramfull faults are redirected as follows:

New Fault Condition Built-in Fault Condition

rom_comp rom_sig_incorrect
rom_data_high_tied_all
rom_data_low_tied_all
rom_data_fault
rom_data_data_tied

rom_address rom_addr_addr_tied
rom_addr_fault

The new fault condition rom_comp uses the gfi test command to
clip the I/O module onto the ROMs and to test all inputs and
outputs of a ROM. If a failure is detected, the test passes control
to GFI. GFI backtraces to find the circuit problem that is
causing the failure.

The new fault condition rom_address checks the address bus,
and if a failure is detected control is passed to GFI. GFI then
backtraces to the circuit problem which is causing the failure.

ROM

program test rom

1

b

! This program tests the ROM functional block of the Demo/Trainer. The
! TL/1 testromfull command is used to test the ROMs. If the ROMs are

! found to be faulty, then one of seven built-in fault conditions is

1

1

generated.

podsetup 'enable ~ready' "on"

podsetup 'report forcing' "on"

setspace space {getspace space "memory", size "word")
! Main part of Test.

testromfull addr $F0000, upto S$FFFFE, addrstep 2, sig $156F
testromfull addr $E0000, upto SEFFFE, addrstep 2, sig $B6lE

end program

4-45

ROM

Stimulus Programs and Responses 4.2.6.

4-46

Figure 4-13 is the stimulus program planning diagram for the
ROM functional block. The outputs in the ROM functional
block are the outputs of U45 and the outputs of the ROM chips
onto the data bus.

The stimulus programs to exercise these outputs are rom(_data
(which reads data from U29 and U30), rom! data (which reads
data from U27 and U28), and decode (which accesses each
decoded address space in the Demo/Trainer UUT).

One of the rules for stimulus programs is that when dealing with
a data bus, every component that is decoded separately to output
onto the data bus must have a separate stimulus program to read
data from that component. For this reason, two stimulus
programs are required: rom(data and roml data.

ROM

(This page is intentionally blank.)

4-47

ROM

Stimulus Program Planning

PROGRAM: DECODE

PERFORMS AN ACCESS FOR EACH DECODED
BLOCK

4-48

MEASUREMENT AT:
U45-36
READY FEADY 80286 BUS
CIACUIT MICROPROCESSOR BUFFER
ADDRESS -
DECODE -

ROM

Wa-3 “SH1i-2

AO1 40
a02__ 3
AD3 =]
A04__ 7
A05__ 6
A6 &
AD7 4|
ADB 3
ADS_25
ALD 24
ALl 21
at2_23
YERN
Al4 26
A15_ 27
+5V i

14 15 AO4
AD2
AD3
AD4
ADS
ADB
+5Y AT4 207
B .
4, 7K ADB 3 | 1a08
A08 25 [Tno09
ALD 24 A10
ALl 21 A1d
Alz 3 AlZ
y a13 2 A13
Ala 26 Ls32 A1d
a15 27 A15
+5V 1 5V
20
EEN
22y
ROM1AO0Y
ROMOADY
DATA & ADDRESS BUS
AOMO

Figure 4-13: ROM Stimulus Program Planning

4-49

ROM

program romO_data

STIMULUS PROGRAM to exercise data out of ROMs U29 and U30.

TEST PROGRAMS CALLED:
recover ¢}

GRAPHICS PROGRAMS CALLED:
{none})

Global Varilables Modified:
recover_times
devname

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to 1
resynchronize the bus controller and the pod. !
1

The 80286 microprocessor has a!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. i

Reset to Zero
Measurement device

declare global numeric recover times

(continued on the next page)

Figure 4-14: Stimulus Program (rom0_data)

4-50

ROM

! FAULT HANDLERS: !

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover_times = 0
! Let GFI user select which I/O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program ROMO_DATA"

Set desired measurement modes

setspace space {getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode “data"

Present stimulus to the UUT

arm device devname ! Start response capture.
rampaddr addr $E0000, mask S1FE
readout device devname ! End response capture

end rom0 data

Figure 4-14: Stimulus Program (rom0_data) - continued

4-51

ROM

STIMULUS PROGRAM NAME: ROMO DATA
DESCRIPTION: SIZE: 454 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL 1VL Mode Counter Range Pin
U29-11 PROBE 45DD 1 0 TRANS
U29~11 I/0 MODULE 43DD 1 0 TRANS
U29-12 PROBE CF83 1 0 TRANS
029-12 I/0 MODULE CF83 1 0 TRANS
U29-13 PROBE BD79 1 0 TRANS
U29-13 I/0 MODULE BD79 1 0 TRANS
U29-15 PROBE 8A76 1 O TRANS
U29-15 I/0 MODULE 8A76 1 0 TRANS
U29-16 PROBE 66F3 1 O TRANS
U29-16 1/0 MODULE 66F3 1 O TRANS
U29-17 PROBE FABS 1 O TRANS
U29-17 I/0 MODULE FABS5S 1 0 TRANS
U29-18 PROBE 534E 1 0 TRANS
U29-18 I/0 MODULE 534E 1 O TRANS
U29-19 PROBE 8DOA 1 0 TRANS
U29-19 1/0 MODULE 8DOA 1 O TRANS
U30-11 I/0 MODULE 73ES 1 O TRANS
U30-12 I/0 MODULE AC84 1 0 TRANS
U30-13 I/0 MODULE SOBB 1 0 TRANS
U30-15 I/0 MODULE 5B3B 1 0 TRANS
U30-16 I/0 MODULE O6EF 1 O TRANS
U30-17 ' 1I/0 MODULE 00AQ 1 0 TRANS
U30-18 I/0 MODULE 6BFO 1 0 TRANS
U30-19 I/0 MODULE 52EE 1 0 TRANS

Figure 4-15: Response File (rom0_data)

4-52

ROM

program roml data

STIMULUS PROGRAM to exercise data out of ROMs U29 and U30.

! Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT !

! activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
! {
1 1
1 1
H 1
! This stimulus program is one of the programs which creates activity t
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault 1
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover() program is executed to !
! resynchronize the bus controller and the pod. !
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

! TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!

bus controller that is totaly !

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

! GRAPHICS PROGRAMS CALLED:
(none)

! Global Variables Modified:

recover_times Reset to Zero

1
1
1
1
1
1
devname Measurement device !

declare global numeric recover_ times

(continued on the next page)

Figure 4-16: Stimulus Program (rom1_data)

4-53

ROM

handle pod timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover times = 0
! Let GFI user select which I/O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program ROM1_ DATA™

! Set desired measurement modes

setspace space {getspace space "memory”, size "word")
reset device devname

sync device devname, mode “pod"

sync device "/pod", mode "data"

! Present stimulus to the UUT

arm device devname ! Start response capture.
rampaddr addr $F0000, mask $1FE
readout device devname ! End response capture

end program

Figure 4-16: Stimulus Program (rom1_data) - continued

4-54

ROM

STIMULUS PROGRAM NAME:

DESCRIPTION:

Node
Signal Src

U27-11
U27-11
U27-12
U27-12
U27-13
U27-13
U27-15
U27-15
U27-16
U27-16
027-17
U27-17
U27-18
U27-18
U27-19
U27-19
U28-11
U28-12
U28-13
U28-13
U28-16
U28-17
U28-18
U28-19
U23-2

U23-2

ROM1_DATA

Learned
With

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE
I/0 MODULE

Figure 4-17: Response File (rom1_data)

Response
Async Clk
SIG IVL IVL

73E9
73E9
ACg4
AC84
50BB
S0BB
SB3B
5B3B
06EF
06EF
00A0
O00AQ
6BFO
6BFQ
52EE
52EE
45DD
CF83
BD79
8A76
66F3
FABS
534E
8DOA
52EE
52EE

e e e e e el e el T g Sy Sy S py i Sy W S P
COO0OCOCOCO0COOOCOOO0OOOOOOO0ODO OO

Data

SIZE:

Counter
Mode

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Counter Range

(continued on the next page)

982 BYTES

Priority
Pin

4-55

ROM

U23-3
U23-3
U23-4
U23-4
U23-5
U23-5
U23-6
U23-6
U23-7
023-7
U23-8
U23-8
U23-9
U23-9
U3-2
U3-2
U3-3
U3~-3
U3-4
U3-4
U3-5
U3-5
U3-6
U3-6
U3-7
U3-7
U3-8
U3-8
U3-9
U3-9

4-56

PROBE
I1/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE

Figure 4-17: Response File (rom1_data) - continued

6BFO
6BF0
00A0
00AO0
O6EF
06EF
5B3B
5B3B
SOBB
S0BB
AC84
AC84
73E9
73E9
8DOA
8DOA
534E
534E
FABS
FABS
66F3
66F3
8A76
B8A76
BD79
BD79
CF83
CF83
45DD
45DD

RFREBRPRPRERPHRERERREBREREEBREREBRERRRR BB S E

[N eleNoNoRelNoNoNeNeNeoNeoNo oo oo No o BoNoNo oo NoNoRoRoBo No

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

ROM

Summary of Complete Solution for ROM 4.2.7.

The entire set of programs and files needed to test and GFI
troubleshoot the ROM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
(Complete File Set for ROM)

Programs (PROGRAM):

TEST_ROM Functional Test Section 4.2.5

ROMO_DATA Stimulus Program Figure 4-14

ROMI1_DATA Stimulus Program Figure 4-16

DECODE Stimulus Program Figure 4-108
Stimulus Program Responses (RESPONSE):

ROMO_DATA Figure 4-15

ROMI1_DATA Figure 4-17

DECODE Figure 4-109
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

4-57

ROM

(This page is intentionally blank.)

RAM

RAM FUNCTIONAL BLOCK 4.3.

Introduction to RAM 4.3.1.

The typical RAM block consists of the RAM chips, an address
1 path from the microprocessor to the RAMs, a bidirectional data
| path between the microprocessor and the RAMs, and RAM-
select circuitry. There are often hardware buffers between the
microprocessor and the RAM chips.

There are two basic types of RAM: static and dynamic. Static
RAM chips are faster and require no refresh circuitry. They are
also more expensive and take more room for a given memory
size. Dynamic RAM chips use a capacitor for charge storage
and therefore must be periodically refreshed to maintain data
storage. However, dynamic RAM chips provide more memory
for a given size chip.

A simplified diagram of a typical RAM functional block is
shown in Figure 4-18.

Considerations for Testing and
Troubleshooting 4.3.2.

Speed and accuracy are the most critical factors in RAM testing,
and RAM tests are typically a compromise between these two
factors. To further complicate the issue, different hardware
configurations bring with them different failure mechanisms
which may require specialized testing.

The built-in RAM tests offers a number of choices to better
match the test to the testing needs. While the RAM FULL,
RAM FAST and pod-dependent RAM QUICK tests directly
address the speed and accuracy compromise, they are different
from each other.

Section 5 of the Technical User's Manual describes the various
RAM tests in detail.

RAM

Micro-
processor

4-60

RAMs

Data ’\
Data Bus Buffer < /
R/W Strobe
| "
: Address MUX :
and Refresh N
Address Bus Agg;g:s y Circuitry .y
: (Dynamic
—l\ Decode RAM Control
/] & Select

Figure 4-18: Typical RAM Block

RAM

Many types of faults can occur in RAM functional blocks.
Address lines or data lines can be stuck or tied to other lines.
Individual memory cells can be stuck low or high, or cells can
be aliased (they respond to more than one address). Transition
faults can exist (where a cell can change from one state to
another, but not back again). Coupling faults can cause the
contents of one cell to be disturbed when the contents of another
cell is changed. If this coupling depends on the contents of
several neighboring cells, the fault is called a pattern sensitive
fault. Chip select address decoding logic can be faulty. Row or
column decoders might not select when they should or they
might select when they shouldn't. In dynamic memory, refresh
logic can fail, causing cells to lose their contents.

Although failure mechanisms are different between dynamic and
static RAM, both types of RAM may be functionally tested with
exactly the same built-in RAM tests; only the delay parameter is
of unique concern for dynamic RAM. The delay parameter
provides a means of testing the refresh circuitry by specifying
the number of milliseconds to wait for refresh-related faults to
occur.

The first step in troubleshooting RAM is to run a built-in
functional test. Besides confirming a RAM fault, the functional
test often provides excellent clues for where to begin fault
isolation. Figure 4-19 illustrates typical fault information
provided by the RAM tests.

In general, the following procedure will work for
troubleshooting any RAM faults discovered by the
9100A/9105A:

1. Create a combination of reads and writes to confirm
the failure.

2. Synchronize the probe as needed.

3. Perform looping reads and writes while tracing with
synchronized probe.

4-61

RAM

Fault TEST RAM FAST TEST RAM FULL

Condition coupling coupling
enabled disabled

Stuck cells always found always found always found

Aliased cells
Stuck address lines

Stuck data lines

Shorted address lines

Multiple selection
decoder

Dynamic coupling

may be found

always found

always found

Shorted data lines

Aliasing between
bits in same word

may be found

always found

may be found

Pattern-sensitive
faults

not found

not found

not found

Refresh problems

4-62

always found, if delay is sufficiently long and standby reads do

not mask the problem.

Figure 4-19: RAM Test Failure Information

RAM

RAM Example 4.3.3.

The Demo/Trainer UUT, Figure 4-20, uses 128K bytes of
dynamic RAM, organized as 64k x 16 bits, and composed of
sixteen 1-bit wide 4164 chips.

Keystroke Functional Test 4.3.4.
Use the RAM TEST key to enter the following command:

TEST RAM FAST ADDR 0 UPTO 1FFFE DATA MASK ...
. FFFF ADDR STEP 2 DELAY 250 SEED 0
(ADDR OPTION: MEMORY WORD)

4-63

RAM

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SCOCKET TEST ACCESS SOCKET

RESPONSE

CLOCK AND RESET ChK BUS

BUFFER
READY]

READY ADORESS
CIACUIT DECODE
DYMAMIC

| FAMAGT RAM
TIMING

4-64

RAM

RELLE
a7 3 [A a
RAE 13|, A A
RAS 10 | .z A A
IY VY P A A
AZ 12| a3 A E
A2 B | an A A
TY P A B
A0 5 | no A A
4 JFam
A5 TRT
R
2 lo @
TU3a
1015 1014 1013 1012
f
RAT RAAT Aa7
| |Ras AA A6
| |Ras AA A5
| e EX 2
RA i
RA HA
RA Ra A
RA FAA A =]
s
=] '_"';_5‘
2 |
| 1010 1009
{ AAg
_31684
| a7 g [a
AAE 1 A
ab
EEERE) E
A5
Bea 13,4 A
L 12 | 43 A
AAE 6 A
A2
AA1 7 |y]
A0 5 |40 A
A _JFAE
—15iEEE
_‘2 W
Z 1o a
uag |
J
1007 1006
ArS
| TASL |
| FAH-RATTE
4164
aa7] A7 8 Ra7 AaT a7
45 | RAS 13 "5 A B
AT RAS 10 Li] L. AS
44 R A E N)
A3 AA A A3
A2 5 Ak A wa
| 1 7 R A 1
A0 5 A B AAD 5 |ag
4 4
i e
| —15] 15 | 1
| —3 2 2
= =
‘ RAT
J ooz 1001 1000
1
| HATTE B

Figure 4-20: RAM Functional Test

4-65

RAM

Programmed Functional Test 4.3.5.

4-66

The test_ram program is the programmed functional test of the
Dynamic RAM functional block. This program uses the
testramfast command to test the RAM. This command will
generate one of eleven different fault conditions if the testramfast
fails. All eleven fault condition handlers pick up some
parameters and redirect the fault condition to a new fault
condition called ram_component. The fault condition handler
for the ram_component fault condition accepts a parameter called
data_bits that indicates which data bit positions are faulty.

The ram_component fault condition handler first checks the
Ready circuit to make sure that a ready fault condition is not
causing RAM failures. If the Ready circuit is good, one of the
failing RAMs (as indicated by the data_bits parameter) is
checked using the gfi test command. If a failure is found, GFI
takes control and backtraces to the circuit fault causing the
failure.

If the RAM component is good, the ram_component fault
condition handler uses the gfi test command to check the data
bus at the bus buffers. If a failure is detected, GFI begins
backtracing from the bus buffers.

program test_ram

! FUNCTIONAL TEST of the RAM functional block. !
1 t
! This program tests the RAM functional block of the Demo/Trainer. The !
! TL/1 testramfast command is used to test the RAMs. If the RAMs are !
t found to be faulty, then one of twelve built-in fault conditions is !

1

1

! generated.
1

! Setup

podsetup 'enable ~ready' "on"

podsetup 'report forcing' "“on"

setspace space (getspace space "memory", size "word")
! Main part of test

testramfast addr 0, upto $1FFFE, delay 250, seed 1

end program

RAM

Stimulus Programs and Responses 4.3.6.

Figure 4-21 is the stimulus program planning diagram for the
RAM functional block. There is one stimulus program and a
matching response file for RAM. The stimulus program
ram_data outputs data from RAM onto the data bus.

One rule for a stimulus program is that data should flow in only
one direction during the measurement portion of the stimulus
1 program. Although ram_data executes ram_fill in order to fill
: RAM with known data, ram_fill is executed before the
measurement is started in the ram_data stimulus program.
Therefore data will flow only in one direction during the
measurement portion of ram_data.

4-67

RAM

4-68

Stimulus Program Planning

INITIALIZATION PROGRAM: RAM_FILL

INITIALIZES RAM BY FILLING THE FIRST 512
LOCATIONS OF RAM WITH STANDARD DATA

CLOCK AND RESET

MEASUREMENT AT:
(NONE)
80286 BUS
MICROPAROCESSOR BUFFER

T
m
=
E

READY
CIRCULT

.

ADDRESS

AaRADY

DECODE

DYNAMIC
AaM
TIMING

T

RAM

1014 1013
! 4154 A164 4164
! A7 AAT A7 RA7 8 a7
46 L. AB
| i AS GLERELEEY
Al a4 4, A4
A a3 X A3
Aa aZ A Az
| Ll At | sl 7 1.y
| | EDI'EEE AD A
| s |
| 15]5aE |
| 24w
2o a _
=)
SHi-5
1040 D09 1008 3 i2
- _—

uas
-
| 1007 1006 1005 o4
HED — l
N O O R Y- N]
Aap-WAITE 4
] AA AA7 9
A RAE 13
A AAS
15 [Fad 11
[Fa3_ a2
e
RAt
RAD
-I,_‘¢
15]
3
| AsO-RAT
] 1002 ooz | [1061 tooa
1 AAS i
L CASL l
1 FAR-WALTE

Figure 4-21: RAM Stimulus Program Planning

4-69

RAM

program ram data

STIMULUS PROGRAM to exercise data out of the dynamic RAM.

1

!

! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the poed. Two fault 1
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !
1

1

1

1

TEST PROGRAMS CALLED:
dram filll () Initialize data in the RAM

recover ¢} The 80286 microprocessor has a!
bus controller that is totaly !
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{none})
devname Measurement device

Global Variables Modified:

1
i
1
1
Local Variables Modified: !
1
1
1
recover times Reset to Zero !

declare global numeric recover times

(continued on the next page)

Figure 4-22: Stimulus Program (ram_data)

4-70

RAM

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout recovered
recover (}

end handle

recover_times = 0
! Let GFI user select which I/0 module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program RAM DATA"

! Set desired measurement modes

reset device devname

execute ram fill()

setspace space (getspace space "memory", size "word")
sync device devname, mode “pod"

sync device "/pod", mode *data"

! Present stimulus: Read data out of RAM

arm device devname ! Start response capture.
rampaddr addr 0, mask S1FE
readout device devname ! End response capture

end program

Figure 4-22: Stimulus Program (ram_data) - continued

4-71

RAM

STIMULUS PROGRAM: RAM DATA

DESCRIPTION:

Response

Node Learned Async Clk
Signal Src With SIG INL LVL
U34-14 I/0 MODULE 95Al1 10
U35-14 I/0 MODULE 6F97 10
U36-14 I/0 MODULE 7744 10
U37-14 I/0 MODULE 5AES 10
U38-14 I/0 MODULE AS54D 10
U39-14 I/0 MODULE 797B 10
U40-14 I1/0 MODULE ASF7 10
U41-14 I/0 MODULE 3BEF 10
U48-14 PROBE COA6 10
U48-14 I/0 MODULE COA6 10
U49-14 PROBE 1338 10
U49-14 I/0 MODULE 1338 10
U50-14 PROBE 66F9 10
U50-14 1/0 MODULE 66F9 10
US51-14 PROBE 6CF8 10
U51-14 I/0 MODULE 6CF8 10
U52-14 PROBE BEOS 10
U52-14 1/0 MODULE BEOS 10
U53-14 PROBE 3C7C 10
US3-14 I/0 MODULE 3C7C 10
U54-14 PROBE 70F3 10
US54-14 I/0 MODULE 70F3 10
U55-14 PROBE DACC 10
U55-14 I/0 MODULE DACC 10

SIZE: 454 BYTES
Data
Counter Priority
Mode Counter Range Pin

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-23: Response File (ram_data)

4-72

RAM

program ram fill

! INITIALIZATION PROGRAM fills Dynamic RAM with a pattern of data.

1

! TEST PROGRAMS CALLED:
{none})

Text Files Accessed: !
dram fi111 !

1

1
1 t
! !
! GRAPHICS PROGRAMS CALLED: !
! {none}) !
1 1
1 1
1 1
1

setspace space (getspace space "memory”, size "word")
writeblock file "dram filll", format “motorola"

end program

Figure 4-24: Inititalization Program (ram _fil})

4-73

RAM

Summary of Complete Solution for RAM 4.3.7.

The entire set of programs and files needed to test and GFI
troubleshoot the RAM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
{Complete File Set for RAM)

Programs (PROGRAM):

TEST_RAM Functional Test Section 4.3.5

RAM_DATA Stimulus Program Figure 4-22

RAM_FILL Initialization Program Figure 4-24
Stimulus Program Responses (RESPONSE):

RAM DATA Figure 4-23
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):

DRAM _FILL1 Initialization Data File
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

Dynamic RAM Timing

DYNAMIC RAM TIMING FUNCTIONAL BLOCK 4.4.

Introduction to Dynamic RAM Timing Circuits 44.1.

Unlike static RAM, dynamic RAM chips use a capacitor for
charge storage and therefore must be periodically refreshed to
maintain the data in memory. Refreshing does not require that
data be re-written at memory locations; it requires only that
every row be accessed within a certain time period (typically at
least every 2 milliseconds). This is sufficient to restore the
charge on the memory cells.

In addition, dynamic RAM uses multiplexed address signals.
The row address is clocked into the internal decoder of the
dynamic RAM chip with the falling edge of the Row Address
Strobe (RAS), and the column address is clocked with the
falling edge of the Column Address Strobe (CAS). Multiplexed
addressing decreases the pin count and package size, but it also
makes dynamic RAM more difficult to test and troubleshoot than
static RAM.

Considerations for Testing and
Troubleshooting 4.4.2.

The thought process used to test and troubleshoot dynamic RAM
is very similar to that used for static RAM, but the actual
measurements for dynamic RAM are more difficult because of
row and column strobing for multiplexed addresses, because of
refreshing, and because there are more failure mechanisms.

Consider, for example, a dynamic RAM with 64K memory
locations addressed by eight address inputs (MA7-MAOQ). A
multiplexer allows the 16 address lines to be brought to the eight
RAM address lines, using RAS to strobe the row address and
CAS to strobe the column address. Typical timing for a read
cycle of such a system is shown in Figure 4-25.

With static RAM, the microprocessor's address lines can be
tested by making measurements using the probe or an I/O

4-75

Dynamic RAM Timing

Pod Address Pod Data
Sync Sync

s \I i
oo TN WIIC (I

|

| |
DATA } Data Valid

|

| |
~WRITE NH/HHNNH/NNNN :

Dynamic RAM Read Cycle, Without Refresh

j¢&——— Refresh Cycle e Read Cycle —————]

we-we TN XN XTI NI

DATA @
ewe [T i

Dynamic RAM Read Cycle, With RAS-Only Refresh

Figure 4-25: Dynamic RAM Read Cycles

4-76

Dynamic RAM Timing

module synchronized to the pod address while performing
looping reads or writes. With dynamic RAM, however, the
RAM's address inputs are multiplexed between row and column
addresses. It is important to be able to separate row addressing
from column addressing. To test dynamic RAM addressing
requires the ability to control the timing of the clock strobe for a
measurement. The 9100/9105A has this capability; under
program control, it can adjust the timing for when the probe or
I/O module actually clocks data. Using the getoffset and
setoffset commands, you can create a program to measure the
address line activity on the RAM chips at the RAS strobe (or at
the CAS strobe). Typically, it makes sense to have two separate
programs: one to measure activity for RAS address timing and
one to measure activity for CAS address timing.

For the top example of Figure 4-25, the TL/1 setoffset and
getoffset commands are used to adjust the sync timing from Pod
Data Sync (or Pod Address Sync) to the RAS and CAS
positions. One program could be used to measure at RAS time
and another to measure at CAS time. The I/O module or probe
used to measure the RAS and CAS address activity would be
synchronized to Pod Data Sync or Pod Address Sync.
However, the setoffset command provides an offset from Pod
Data Sync or Pod Address Sync that determines when the
clocking for measurements actually occurs.

For some designs, more than one RAS cycle can occur during a
read or write cycle. The bottom half of Figure 4-25 shows
typical timing for such a situation. RAS goes low first for a
refresh and then again later for the read. In this case, it is not
sufficient to clock measurements on address lines with RAS
alone. If you want to examine the row address signals on the
address lines, you could use the Refresh signal to qualify
clocking for the appropriate address information.

Measuring the RAS and CAS Lines

An easy check for RAS and CAS lines is to look for activity on
the lines. With the probe or I/O module synchronized to the
FREERUN clock, an asynchronous level history for RAS
should always show high and low levels and never an invalid

4-77

Dynamic RAM Timing

4-78

level. An asynchronous level history for CAS will be the same
as RAS if it is being accessed at the time. When the RAM is not
being accessed, CAS may be similarly active or it may remain
high, depending on the UUT.

Although the absence of the proper levels described above will
indicate some types of faults, these simple checks cannot
determine if the lines are definitely good. Subtle timing
problems are common with some dynamic RAM designs.

To analyze the exact timing of RAS and CAS, use the
0100A/9105A to generate the appropriate sync signal and to
display the UUT waveforms on an oscilloscope:

1. Use the SYNC key on the operator's keypad to select
the Pod Address Synchronization mode:

SYNC TO POD ADDR
or SYNC I/O MOD <number> TO POD ADDR

2. Use the READ key on the operator's keypad to enter
the following command:

READ FAST FOREVER ADDR <ram address>

3. Synchronize an oscilloscope to the TRIGGER
OUTPUT sync output on the rear panel of the
9100A/9105A.

4. Study the oscilloscope waveforms at the dynamic
RAM chips.

Once the timing of RAS and CAS (as well as other dynamic
RAM signals) is understood from the above procedure, two
options are available. The first is to troubleshoot directly with a
synchronized oscilloscope, and the second is to write a TL/1
program to automate the procedure.

Dynamic RAM Timing

O Determining If Refresh Signals Are Working

Typical dynamic RAM must access every row address for cell
refresh at least every 2 milliseconds. The ability of the
9100A/9105A to measure frequency min-max is the simplest
tool for troubleshooting the circuitry that implements this
refresh. No matter how the refresh circuitry is designed, the
refresh signals (refresh address, RAS, and related timing
signals) are on a regular schedule of one full cycle in less than 2
milliseconds. For a first-cut characterization of these signals, try
measuring frequency min-max.

For a more precise characterization of the refresh signals, use the
external synchronization capabilities (start, stop, clock) of the
9100A/9105A. Characterize all related signals during the
start/stop interval of one refresh cycle, and then characterize the
signals used for start/stop/clock with frequency min-max.

Dynamic RAM Timing Circuit Example 4.43.

A diagram of read/write timing for the Demo/Trainer UUT's
RAM timing circuit is shown in Figure 4-26. The circuit
schematic is shown in Figure 4-28.

Accessing

To select RAM, U65 and U66 multiplex 16 address lines into
eight lines. The multiplexed address is then latched into the

i RAM chips by two externally applied clock pulses. The first,
: the negative-going edge of the row-address strobe (~RAS),
1 latches the eight row-address bits. The second, the negative-

going edge of the column-address strobe (~CAS), latches the
' eight column-address bits. Timing for RAS and CAS is
1 determined by delay line U60. CAS is a delayed RAS signal; it
goes low 55 nsec after RAS goes low.

4-79

Dynamic RAM Timing

|
|

~CASL | \
~CASU [
|
]

RAO-RA7 'HHNN* Ao XZZZZZX Column Address
RAM-WRITE /NNNNHHHNHN/

DATA (Data Valid

-

L

IF

Read Cycle

J

~CASL

~CASU \I
e 111 P 11 e 1 1

wnsre I TN [
o TN

READY \

||

Write Cycle

Figure 4-26: Dynamic RAM Read/Write Timing

4-80

Dynamic RAM Timing

The 80286 can access upper and lower bytes separately, or
together as a word. RAM is organized as 128K bytes,
addressed from 00000 to 1FFFE. Access is accomplished by
gating ~CASL and ~CASU (U58D). IAO0O (internal buffered
address bit zero) selects DO-D7 and ~IBHE (Internal Buffered
Bus High Enable) selects D8-D15. The low byte is accessed
when JAQO is low. The high byte is accessed when IBHE- is
low. The entire word is accessed when both TAOO and ~IBHE
are low. The 80286 determines the type of access based on the
instruction being executed.

Refreshing
RAM Refresh timing is illustrated in Figure 4-27.

To maintain data, each of the 128 RAS addresses must be
refreshed (or read) every 2 msec. The Demo/Trainer UUT uses
the RAS-only refresh method for this purpose. A RAS-only
refresh cycle asserts only the RAS line to strobe in the refresh
address.

A single Demo/Trainer UUT row refresh occurs every 15 psec.
A complete refresh entails 128 row refreshes, requiring about
1.9 msec.

The RFRQ (Refresh Request) signal both marks the need for a
refresh cycle and increments the refresh address counter U67.
U42 and U43 are used to divide PCLK (4 MHz) by 16 to
produce RFRQ.

RAM refresh and RAM access are mutually exclusive. U61D
insures that a refresh cannot occur if a RAM access is in
progress. Conversely, if a refresh is in progress and the
processor asks for a RAM access, US8B prevents Ready from
being returned, causing the addition of a wait state. The
processor is thus put on hold until the refresh is completed.

4-81

Dynamic RAM Timing

8 MHz CLK
Refresh
Request RFRQ
Refresh
Grant RFGT
Refresh
Address ~RFAE
Enable
Refresh
RAS RRAS
Refresh Address

4-82

Refresh Refresh
Begins Ends

V___

‘ JLL

7

TIITTTTTITTIN rowrsomss XUTTTAACLLLN

Refresh request occurs every 15 psec (67 KHz) and requires 600 ns to complete.

Figure 4-27: RAM Refresh Timing

Dynamic RAM Timing

RAM refresh is performed as follows:

1. If ~RAM s high (no RAM access in progress) and
refresh is being requested, U61D outputs RFGT
(Refresh Grant).

2. RFGT high enables the U44A/U44B state machine.
This circuit times the output of Refresh Address
Enable (RFAE) to U67. After the proper refresh
address setup time, it also enables Refresh RAS
(RRAS) to strobe in the refresh address.

3. After the refresh address is strobed in, RFGT goes
low, allowing the processor access to the RAM.

i Keystroke Functional Test 444.

; 1. Use a 16-pin clip module on side A of I/O module 1 to check
f CAS addresses and select line. Use the the EXEC and I/O
! MOD keys with the commands below for each of the
following parts: U65, U66 and U26. The correct
measurement for each pin is shown in the table below.

EXECUTE UUT DEMO PROGRAM CAS STIM
SHOW I/0O MOD 1 PIN <see table> CAPTURED ...
. RESPONSES

NOTE

1 The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
1 been done for you in this example, and the results are
: shown in the "I!I0 MOD PIN” column of the
response table in the next figure.

4-83

Dynamic RAM Timing _

SIGNAL PART/PIN I/0 PIN SIGNATURE

] RAO U65-4 4 0140
; RA1 -7 7 02AF
1 RA2 -9 13 0150
: RA3 -12 16 0349
RA4 U66-4 1 00D3

RA5 -7 7 0222

RAG -9 13 0151

RA7 -12 16 0263

RAM-WRITE U26-8 14 0352

2. Use a 16-pin clip module on side A of I/O module 1 to check
RAS addresses. Use the the EXEC and I/O MOD keys with
the commands below for each of the following parts: U65
and U66. The correct measurement for each pin is shown in
the table below.

EXECUTE UUT DEMO PROGRAM RAS STIM
SHOW I/0 MCOD 1 PIN <see table> CAPTURED
. RESPONSES

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO U65-4 4 02BF
RAl -7 7 0154
RA2 -9 13 0227
RA3 -12 16 01D1
RA4 U66-4 4 022A
RAS =1 7 0150
RA6 -9 13 022B
RA7 -12 16 0114

3. The next step is measuring refresh signals that are active
with no stimulus. Use a 16-pin clip module on side A of I/O
module 1 to test refresh signals on RAQ-RA7. Connect the
external control lines as follows:

Start to U67-9
Stop to U67-9
Clock to U63-8

4-84

Dynamic RAM Timing

Use the the SYNC and I/O MOD keys with the commands
below to measure refresh signals. The correct measurement
for each pin is shown in the table below.

SYNC I/0 MOD 1 TO EXT ENABLE ALWAYS
crock | starT T sTop T

ARM I/O MOD 1 FOR CAPTURE USING SYNC

SHOW I/0 MOD 1 PIN <see table> CAPTURED
RESPONSES

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO Ues-4 4 968C

RAL -7 7 AFC1

RA2 -9 13 4A2C

RA3 ~12 16 25AF

RA4 U66-4 4 ACDE

RA5 -7 7 122D

o RA6 -9 13 EEA6
' RA7 -12 16 68F8

4. Use a 14-pin clip module on side A of I/O module 1 to check
the select logic. Use the the EXEC and /O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMO PROGRAM RAMSELECT1
SHOW I/O MOD 1 PIN 14 CAPTURED RESPONSES

5. Use a 14-pin clip module on side A of I/O module 1 to check
the select logic. Use the the EXEC and I/O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMO PROGRAM RAMSELECT2
SHOW I/O MOD 1 PIN 14 CAPTURED RESPONSES
SHOW I/0O MOD 1 PIN 17 CAPTURED RESPONSES

4-85

Dynamic RAM Timing

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

BUS
BUFFER

‘ CLOCK AMD AESET i-|— e

PCLK CLK

READY

READY ADRESS
CIRCUIT DECODE -

4-86

Dynamic RAM Timing

ALATCH

naL:
ADOAESS BUS

|
L
Raz 33 A0
Ra3 33
R B -
Raa 33 asz
i
Ras 33 s
SHa-8
YEV B LT, B
| RaE 33 1 i
i NG 13 46 5ns, | 32 NG Ra? o3 AAS
| LED R4E 33 naG
|
| 75""'70 | R 33 AT
1
- s Tl 1
| L Sn5-2 J
i 2 0/0 15
=7
ALEOO |
RTINS e Y . ALSOO |
[UsE 3
] 1
| | |
| |

Figure 4-28: Dynamic RAM Timing Functional Test

4-87

Dynamic RAM Timing

Programmed Functional Test 445.

The tst_refrsh program is the programmed functional test for the
Dynamic RAM Timing functional block. This program checks
the outputs at U65, US58, U63 and U25 using the gfi test
command. If the gfi test command fails, the abort_test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort test

program).

program tst_refrsh

TrrrrrrrnrprtpttILLILILELLLOLLIILILILLITIO IO LI TI IR EITTI LI LIIOGITIRITITILILIIIIGI I TITLIRLrIrrrrrnn

! FUNCTIONAL TEST of the DYNAMIC RAM REFRESH functional block.

1

! This program tests the DYNAMIC RAM REFRESH functiocnal block of the

! Demo/Trainer. The gfi test command and I/0 module are used to perform
! the test.

1
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) I1f gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program {(GFI begins trouble- !
! shooting}. !
{

print "\nlTESTING RAM TIMING & REFRESH Circuit"®
podsetup 'enable ~ready' "on"

if gfi test "U65~1" fails then abort_test ("U65-1")
if gfi test "U66-1" fails then abort_test ("U66-1")

print “RAM TIMING & REFRESH TEST PASSES"
end program

Stimulus Programs and Responses 4.4.6.

Figure 4-29 is the stimulus program planning diagram for the
Dynamic RAM Timing functional block. The ras stim and
cas_stim stimulus programs both perform read and write
accesses to various addresses in RAM. However, the getoffset
and setoffset commands are used to adjust the timing when the
data is measured, so that cas_stim measures data when CAS
addresses are valid and ras_stim measure data when RAS
addresses are valid.

Dynamic RAM Timing

The ramselect] and ramselect2 programs provide stimulus for
measurement of a number of logic outputs. The refsh_addr,
refsh_time, and refsh_u56 programs provide stimulus for
measurement at various ICs that perform the RAM refresh
function. The frequency program measures frequency at a
number of nodes.

4-89

Dynamic RAM Timing

Stimulus Program Planning

U19-6
U24-6
U64-10

Ug0-2,7,14

PROGRAM: RAMSELECT2

EXERCISES THE RAM SELECT LOGIC

MEASUREMENT AT:

us7-12
ugz-8
US58-8,11

CLOCK AND AESET cLs 80286 BUS
MICROPAOCESSORA BUFFER

[PCLEK CLK

READY ADRESS
CIARCUIT OECOOE

4-90

Dynamic RAM Timing

Eng

®
m

e

HaMADY

BOLK

&
RFGT g-/

ALSO2

12] UBa

Figure 4-29: Dynamic RAM Timing Stimulus Program Planning

4-91

Dynamic RAM Timing

program cas stim

TrrrnprrLLLLL LTI LTI LI RTIRIRILIRILILITI IO I NII R R LRI ITIIII R LI RISEILITIITI I LIRS LITILIOIILITISLISLEIIIIII T LIt itett

STIMULUS PROGRAM characterizes CAS address lines.

Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

This stimulus program is one of the programs which creates activity
in the RAM area of the UUT. This stimulus program uses the setoffset
and getoffset commands to adjust the timing to CAS address valid.

TEST PROGRAMS CALLED:

GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
devname Measurement device

bias Offset value to use
frirrrrrrrrLLLLLILILLLILIIOEROLEELCLCIOIOLITIOLIO LRI LI RILPITLIOTTILITIOILIT T PITPITLITTITTITRITTITPITLTITTITEITTITTITTITTITITLIEIITILTIIILITILIILTYL

! Main Declarations !
LAR SRR U O U O O O T U 2 O T A O O O O O O AN O O O A |

declare numeric bias = 999957

frirrrrrrrrrtrLLLLLLILIOLILIOLIRILIERLILIIILIILII LI IR RIRRILI LI I IO LI I IERRTITILILIIITI R LIIIIIIIIILILILIYL

f Main part of STIMULUS PROGRAM
SRR RN R S A RN RN N R R R R RS R R RS E SRS NS U R RN RS

! Let GFI determine the measurement device.

if {(gfi control) = "yes" then
devname = gfi device

else
devname = "/mocdl"

end if

print "Stimulus Program CAS_ STIM"

(continued on the next page)

Figure 4-30: Stimulus Program (cas_stim)

4-92

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

podsetup 'report power' "off*"

podsetup 'report forcing' *off"

podsetup 'report intr' "off*

podsetup 'report address' “off"

podsetup 'report data' "off"

podsetup ‘report control*® "“off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data"

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘'setoffset returned a bad status, fatal error'

end if

! Present stimulus to UUT.

arm device devname
read addr $AB54 ! This addr gives complmentary CAS address
read addr $1549A
write addr $1234, data $4320
read addr $55AA
write addr $AB54, data $AARA
read addr $156A8
write addr $AAS4, data $55RA
read addr $1ADS0
write addr $1FFFE, data $FFFE
read addr $2AD4

readout device devname

! Restore calibration offset

setoffset device "/modl", offset cal offset
end cas_stim

Figure 4-30: Stimulus Program (cas_stim) - continued

4-93

Dynamic RAM Timing

STIMULUS PROGRAM NAME: CAS_STIM
DESCRIPTION: SIZE: 199 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1VL Mode Counter Range Pin
U65-4 I/0 MODULE 0140 10 TRANS
U65-17 I/0 MODULE O02AF 10 TRANS
U65-9 I/0 MODULE 0150 10 TRANS
U65-12 I/0 MODULE 03A9 10 TRANS
U6e-7 I/0 MODULE 022A 10 TRANS
U66-9 I/0 MODULE 0151 10 TRANS
U6e6-12 I/0 MODULE 0263 10 TRANS
u66-4 I/0 MODULE 00D3 10 TRANS
u26-8 I/0 MODULE 0352 10 TRANS

Figure 4-31: Response File (cas_stim)

4-94

Dynamic RAM Timing

program ras_stim

trivrrrrrrrrnbrbbLLLLLLLLOLLLOELLLLLO LI EIPIOEELIIEEIPIOLIEILITEILITIOLITITTIGERITRITLITTITTITTITTIOIIITITTISLILEILILILILILLL

! STIMULUS PROGRAM characterizes RAS address lines.

1 1
! stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! {none) 1
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none} !
1 1
! Local Variables Modified: !
! devname Measurement device
TrrrrrrrrrrrTITEILIEIE RN RIGRTELILLII LI LIIIISLIRIE I LIIEIIITITILIETIPITITITITIIEITTITITITIIITIIITIITITITIIITITILY

! Main Declarations !
TrirrebbrbsrLELLELLLLILLLOLLEO IO LI LTI TIOGLITYR RN LIOLILIOTIPIT I LITRILTITLITTITTITPITLIITRITLITTITRILTITEITITITTISLTITTIEITLILILIIILITIIIL

declare numeric bias = 999964

L0000 0 1 O A A A A 0 A A A A O A O O O O

! Main part of STIMULUS PROGRAM
SRR R R R R R N R R R R RN RN R R R SRR N NS RO R R RN

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print “Stimulus Program RAS STIM"

! Set addressing mode and setup measurement device.

setspace space {getspace space "memory"”, size "word"}
reset device devname

sync device devname, mode “"pod"

sync device "/pod", mode *"addr"

(continued on the next page)

Figure 4-32: Stimulus Program (ras_stim)

4-95

Dynamic RAM Timing

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal_offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘setoffset returned a bad status, fatal error?

end if

! Present stimulus to UUT.

arm device devname
read addr $AB54 ! This addr gives complementary CAS address
read addr $1549A
write addr $1234, data $4320
read addr $55AA
write addr $AB54, data SARRA
read addr $156A8
write addr $AAS54, data $55AA
read addr $1AD50
write addr $1FFFE, data $FFFE
read addr $2AD4
readout device devname

! Restore the calibrated offset value.
setoffset device devname, offset cal offset

end ras stim

Figure 4-32: Stimulus Program (ras_stim) - continued

4-96

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAS STIM
DESCRIPTION: SIZE: 182 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ue5-4 I/0 MODULE 02BF 10 TRANS
U65-7 I/0 MODULE 0154 10 TRANS
U65-9 I/0 MODULE 022A 10 TRANS
U65-12 I/0 MODULE 01D1 10 TRANS
U66~-4 I/0 MODULE 022A 1¢0 TRANS
U667 I/0 MODULE 0150 10 TRANS
U66-9 I/0 MODULE 022B 10 TRANS
U66-12 I/0 MODULE 0114 10 TRANS

Figure 4-33: Response File (ras_stim)

4-97

Dynamic RAM Timing

program ramselectl

ISR R R O N AR SRS E N

STIMULUS PROGRAM to wiggle RAM select circuitry.

1
1
Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !

! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1

1

1

1

1

! Ramselectl is used to stimulate the RAM select circuitry after the
! decoders. The stimulus is a combination of reads that will ensure
! the decoder and related circuitry is working properly.

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALLED: !
! recovexr ¢} The 80286 microprocessor has al
! bus controller that is totally!
! separate from the pod. 1In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program

! resynchronizes the pod and the!
! bus controller. !
1
1
1
i
1
1
1

GRAPHICS PROGRAMS CALLED:
{none}

! Global Variables Modified:

recover_times Reset to Zero
IR R R R R R RN N SRS N R SRR R NN

! FAULT HANDLERS: !
IR N R R e R AR RN R S S S SR R R R R RS S S S R DR RN
handle pod timeout_enabled line

recover (}

end handle

handle pod timeout_recovered
recover (}
end handle

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = *"/modl"

end if

print "Stimulus Program RAMSELECT1"

(continued on the next page)

Figure 4-34: Stimulus Program (ramselect1)

4-98

Dynamic RAM Timing

. ! Set addressing mode and setup measurement device.

setspace space (getspace space "memory”, size "word")
reset device devname

sync device devname, mode "pod*

sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname
read addr $1A5A4
read addr $F0000
read addr $F0000
read addr $5A5A
read addr $F0000
read addr $F0000
write addr $7BDE, data $1234
read addr $F0000
write addr $15A5A, data $9876
read addr $F0000
readout device devname

end program

Figure 4-34: Stimulus Program (ramselect1) - continued

4-99

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAMSELECT1
DESCRIPTION: SIZE: 267 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With sIG IVL LVL Mode Counter Range Pin
U58-3 I/0 MODULE 024F 10 TRANS
U58-6 I/0 MODULE O01B6 10 TRANS
U59-6 I/0 MODULE O01B6 10 TRANS
U61-11 I/0 MODULE 03F9 10 TRANS
U60-2 I/0 MODULE 024F 10 TRANS
U60~-7 I/0 MODULE 01B6 10 TRANS
U60-14 I/0 MODULE O01B6 10 TRANS
U59-9 I/0 MODULE O03F$ 10 TRANS
U63-8 I/0 MODULE O01B6 10 TRANS
U19-6 I/0 MODULE 024F 10 TRANS
U24-6 I/0 MODULE 01B6 10 TRANS
U64-10 I/0 MODULE 024F 10 TRANS
U59-10 I/0 MODULE 0000 10 TRANS

Figure 4-35: Response File (ramselect1)

Dynamic RAM Timing

program ramselect2

rrrrrtrrrtpbErLELLELLIIOLEILIIIIITITIRILIPILEI PR RELILITIOILITIITIIRI I TIITIRIEILIIIITILTITITIrrrrrrtrrnt

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for

the outputs in the UUT that are stimulated by the stimulus program.

1 1
i 1
1 i
1 1
1 1
1 1
1 t
! Ramselect2 is used to stimulate the RAM select circuitry after the !
! decoders. The stimulus is a combination of reads that will ensure !
! the decoder and related circuitry is working properly. Ramselect?2 !
! differs for ramselectl because setoffset is required to delay the 1
! data due to signal propogation though the number of parts in the !
! ram decode circuitry. !
1 1
t !
1 1
! 1
t 1
1 1
1 1
1 1
1 1
1 !

TEST PROGRAMS CALLED:
{none})

GRAPHICS PROGRAMS CALLED:
{none)

Global Variables Modified:
{none}

! Main Declarations t
)0 0 A A A A A A 0 0 A A A A 0 T 0 A O O AN R A O A

declare numeric bias = 9938957

trrrrrrtrrrrrLLLLOLLLIE LY LILI LI RICE LRI E R YL LI IOLIIEILIOLIGIEISLILI LI ISR IO ITG PRI RITERITLITPITIITITIITTITITITTITITILITILILTILISLI

! FAULT HANDLERS: !
IR RN R R R R R R RN R RN R R R R R R R R R R RN RN R R R R R RN AR !

handle pod timeout enabled_line
recover ()
end handle
handle pod timeout_recovered
recover {)
end handle
handle pod_timeout no clk
end handle
jrrrrrrrrrrrrLLLLLLLILIOLI I ILI LI LIORISRI LTI RSLC PRI I IIOIIIIILIITIEIS R TITRITLITITLTILIOITIITITIILITII It

! Main part of STIMULUS PROGRAM !
RN RN R R R R RN N R N R N R R R RN R R RSN N R R RO N

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

(continued on the next page)

Figure 4-36: Stimulus Program (ramselect2)

4-101

Dynamic RAM Timing

else
devname = "/modi"
end if
print "sStimulus Program RAMSELECT2"

! Set addressing mode and setup measurement device.

mem word = getspace space “memory”, size "word"
mem byte = getspace space "memory", size “"byte"
reset device devname

sync device devname, mode "pod*

sync device "/pod", mode "data"

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘setoffset returned a bad status, fatal error®

end if

! Present stimulus to UUT.

arm device devname
setspace (mem word)
read addr $1ASA4
read addr $F0000
read addr $F0000
read addr $5A5A
read addr $F0000
read addr $F0000
write addr $7BDE, data $1234
read addr $F0000
write addr $15A5A, data $9876
read addr $F0000

setspace (mem byte)

read addr 1

read addr 2

read addr 3

write addr 4, data O

write addr 5, data $12

read addr $1111

read addr $11111

read addr $AARA
readout device devname

! Restore original calibration offset

setoffset device devname, offset cal offset
end program

Figure 4-36: Stimulus Program (ramselect2) - continued .

4-102

Dynamic RAM Timing

<:::;)
. STIMULUS PROGRAM NAME: RAMSELECT2

DESCRIPTION: SIZE: 114 BYTES
Response Data
E Node Learned Async Clk Counter Priority
1 Signal Src With SIG IVL LVL Mode Counter Range Pin
u58-8 I1/0 MODULE B6FD 10 TRANS
us8-11 I/0 MODULE BR603 10 TRANS
u62-8 I/0 MODULE F963 10 TRANS
us7-12 1/0 MODULE F99D 10 TRANS

Figure 4-37: Response File (ramselect2)

4-103

Dynamic RAM Timing

program refsh addr

Stimulus programs and response files are used by GFI to backtrace
from a falling node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1

1

1

1

1

1

! TEST PROGRAMS CALLED:

! check_meas (device, start, stop, clock, enable)

! Checks to see if the measure-
! ment is complete using the

! TL/1 checkstatus command. If
1

! redisplay connect locations.
!
1
1
1
1
1
!
1
t

GRAPHICS PROGRAMS CALLED:
{none}

1
1
1
1
!
Local Variables Modified: f
done returned from check meas ()
devname Measurement device !
1
1

trrrrrrrtrrTIITIITI LR RLILLLILILI LI I PIILILIRITITILIIILIIILIIRITRITIITITIIII LI I TITITTITITI I I IR rrrrntt

! Main Declarations !
rrrrtrtrtt LI R ILILILIIIIIIISTIGELILITIILIIILILITILLEITILITITIITTIIEILTITILTIT LTI rrrtrnn

declare numeric done = 0

trrrrrrerrrrrrrr R R R I I I IIORIRILIRI LI LIITILITIIITIRISLIIIIIITIITIRISTIIIIIIIEILEILILEILIILLIYL

! Main part of STIMULUS PROGRAM !
IR R R R R RN R R RN R R NN R R RN RN R RN R R R R R R R R R R R R R R R R

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program REFSH ADDR"

(continued on the next page)

Figure 4-38: Stimulus Program (refsh_addr)

4-104

Dynamic RAM Timing

Set addressing mode and setup measurement device.

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode “ext"

enable device devname, mode "always"

edge device devname, start "+", stop "-", clock "-"

Prompt user to connect external lines.

connect device devname, start "U67-9*, stop "U67-9", clock "U63-8", common "gnd"

External lines determine measurement.
! check meas times out and reprompts if external lines aren't connected

loop until done = 1
arm device devname
done = check meas (devname, "U67-9", "U67-3", "U63-8", *#*%)
readout device devname
end loop

end program

Figure 4-38: Stimulus Program (refsh_addr) - continued

4-105

Dynamic RAM Timing _

STIMULUS PROGRAM NAME: REFSH ADDR

DESCRIPTION: SIZE: 182 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1VL Mode Counter Range Pin
ué7-15 I/0 MODULE 96EC 10 TRANS
u67-1 I/0 MODULE AFCl 10 TRANS
u67-2 I/0 MODULE 4A2C 10 TRANS
u67-3 I/0 MODULE 25AF 10 TRANS
u67-4 I/0 MODULE ACDE 10 TRANS
u7-5 I/0 MODULE 122D 10 TRANS
u67-6 I/0 MODULE EEA6 10 TRANS
ue7-7 I/0 MODULE 68F8 10 TRANS

Figure 4-39: Response File (refsh_addr)

4-106

Dynamic RAM Timing

program refsh time

STIMULUS PROGRAM characterizes the refresh timing.

t
1
stimulus programs and response files are used by GFI to backtrace i
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
1
1
1
1
1
1

the outputs in the UUT that are stimulated by the stimulus program.

1

1

1

1

1

1

1 .

! TEST PROGRAMS CALLED:

! check_meas (device, start, stop, clock, enable)

! Checks to see if the measure-

! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
1 redisplay connect locations. !
1
1
1
1
1
1
1

GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
done returned from check meas (}
devname Measurement device

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfl device

else
devname = */modl"

end if

print "Stimulus Program REFSH TIME"

(continued on the next page)

Figure 4-40: Stimulus Program (refsh_time)

4-107

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "“ext®

enable device devname, mode "“always"

edge device devname, start "+", stop "count", clock "-*
stopcount device devname, count 48

! Prompt user to connect external lines.
connect device devname, start "U67-13%", clock "U13-1", common "gnd"

! External lines determine measurement.
! check_meas times out and reprompts if external lines aren't connected.

loop until done = 1
arm device devname
done = check meas(devname, "U67-13", "*», "Ul3-1", "*m)
readout device devname
end loop

end program

Figure 4-40: Stimulus Program (refsh_time) - continued

4-108

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH TIME

DESCRIPTION: SIZE: 195 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL ILVL Mode Counter Range Pin
u59-9 I/0 MODULE 1592 10 TRANS
u64-13 I/0 MODULE 909A 10 TRANS
u44-5 I/0 MODULE 87E6 10 TRANS
U44-6 PROBE DE42 10 TRANS
ud4-6 I/0 MODULE DEA42 10 TRANS
u59-10 I/0 MODULE AC3E 10 TRANS
U44-9 PROBE 43F3 10 TRANS
ud4-9 I/0 MODULE 43F3 10 TRANS
ud4-8 I/0 MODULE 1AS57 10 TRANS
u6l-11 I1/0 MODULE 10 TRANS
u43-11 I1/0 MODULE 10 TRANS

Figure 4-41: Response File (refsh_time)

4-109

Dynamic RAM Timing

program refsh u56

STIMULUS PROGRAM characterizes the refresh circuitry.

1
1
stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
the outputs in the UUT that are stimulated by the stimulus program. !
1
1
1
1
1

1

1

!

1

1

1

1

! TEST PROGRAMS CALLED:

! check meas (device, start, stop, clock, enable}

! Checks to see if the measure-

! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
! redisplay connect locatlons.

1
1
1
1
1
1
1

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
done returned from check meas ()
devname Measurement device

! Let GFI determine the measurement device.

1f (gfi control) = "yes" then
devname = gfi device

else
devname = */modl"

end if

print "stimulus Program REFSH U56"

(continued on the next page)

Figure 4-42: Stimulus Program (refsh_u56)

4-110

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

setspace space (getspace space "memory"*, size "word")
reset device devname

sync device devname, mode "ext"

enable device devname, mode “always"

edge device devname, start "+", stop "count”, clock "+"
stopcount device devname, count 48

! Prompt user to connect external lines.
connect device "/modl", start "U67-13", clock "U1l3-1", common *gnd"

! External lines determine measurement.
! check_meas times out and reprompts if external lines aren't connected.

loop until done = 1
arm device devname
done = check_meas (devname, "U67-13", "*%, "Ul3-1", "*")
readout device devname
end loop

end program

Figure 4-42; Stimulus Program (refsh_u56) - continued

4-111

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH U56

DESCRIPTION: SIZE:

Response Data
Async Clk Counter
SIG IVL IVL Mode

Node Learned

Signal Src With Counter Range

TRANS 1

PROBE 0
¢ TRANS 1

I/0 MODULE

UsS6-12
us56-12

S

Figure 4-43: Response File (refsh_u56)

4-112

63 BYTES

Priority
Pin

Dynamic RAM Timing

Summary of Complete Solution for

Dynamic RAM Timing

4.4.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Dynamic RAM Timing functional block is
shown below. The format below is similar to a 9100A/9105A
UUT directory (you could consider the functional block to be a
small UUT), but in addition shows the use of each program and
the location in this manual for each file.

UUT DIRECTORY

(Complete File Set for Dynamic RAM Timing)

Programs (PROGRAM):
TST_REFRSH Functional test
CAS_STIM Stimulus Program
RAS_STIM Stimulus Program
RAMSELECT1 Stimulus Program
RAMSELECT2 Stimulus Program
REFSH_ADDR Stimulus Program
FREQUENCY Stimulus Program
REFSH_TIME Stimulus Program
REFSH_US6 Stimulus Program
Stimulus Program Responses (RESPONSE):
CAS_STIM
RAS_STIM
RAMSELECT1
RAMSELECT2
REFSH_ADDR
FREQUENCY
REFSH_TIME
REFSH_US6
Node List (NODE):
NODELIST
Text Files (TEXT):
Reference Designator List (REF):
REFLIST
Compiled Database (DATABASE):
GFIDATA

Section 4.4.5
Figure 4-30
Figure 4-32
Figure 4-34
Figure 4-36
Figure 4-38
Figure 4-117
Figure 4-40
Figure 4-42

Figure 4-31
Figure 4-33
Figure 4-35
Figure 4-37
Figure 4-39
Figure 4-118
Figure 4-41
Figure 4-43

Appendix A

Appendix B

Compiled by the 9100A

4-113

Dynamic RAM Timing

(This page is intentionally blank.)

4-114

Parallel 11O

O PARALLEL INPUT/OUTPUT FUNCTIONAL
BLOCK 4.5.
Introduction to Parallel I/10 451.

Parallel I/O implementations range in complexity from simple
latches to LSI components. This section covers two basic types
of parallel /O circuits, simple discrete I/O circuits, and common
LSI components like Programmable Interface Adapters (PIA)
and Programmable Interval Timers (PIT).

Parallel 1/O is one of a microcomputer's interfaces to the real
world. The microcomputers in products like cash registers,
copiers, telephone switching equipment, electronic instruments,
and personal computers often monitor and control optical or
electromechanical components like LEDs, displays, keyboards,
optical switches, printers, disk or tape drives. Often, the
interface to these components from the microprocessor's
perspective is a set of registers to which it can read and write
data.

Output lines may be connected to recording or display devices,
which can be damaged if random data is written indiscriminately
to them. Signals controlled by output ports can produce
voltages or actuate devices that can pose a threat to human
safety. Care should be taken in designing stimulus programs
when the possibility of injury to people or damage to equipment
can result.

Considerations for Testing and
Troubleshooting 4.5.2.

Programmable LSI Components

Programmable LSI components usually contain internal registers
which characterize the component to a particular circuit
application. Among the ways in which these components can be
programmed are:

4-115

Parallel YO

4-116

® Setinternal operating modes.

¢ Configure I/O ports as inputs or outputs.
¢ Setedge polarity on edge-sensitive inputs.
¢ Enable or disable interrupts.

¢ Establish data exchange protocol.

When testing LSI components, it is necessary to initialize them
first. Initialization usually consists of a series of reads from and
writes to internal registers. It is useful to create a separate
9100A initialization program which can be called from various
stimulus programs, or from the operator's keyboard.

If a component, such as a PIA, does not work properly after
initialization, check the inputs that affect its operation, such as
chip-select lines, read and write lines, register-select lines, and
clocks. Signals that reset, gate, or set outputs to high impedance
might also be suspect. If these inputs all appear good, the bus
cycles accessing the component may not have the proper number
of wait states.

To verify operation of the component, stimulus commands such
as rampdata, read, and write can be used in combination with
1/O-module measurements. For troubleshooting both inputs and
outputs on devices such as LEDs and keyboards, it is often
necessary to prompt the operator to interact with the UUT.
Simple commands prompting operator action can be included in
stimulus programs and displayed on the operator's display.

Outputs can be tested with write, toggledata, or rampdata
commands. Responses can be read as signatures or as
asynchronous or clocked level history. Signatures are useful for
identifying outputs that are tied to each other. If there is not an
appropriate clock available, transition counts or level history can
be used.

Inputs can be verified by reading the component. To exercise all
states of the input lines, some type of stimulus must be applied.
If the circuit allows, the inputs can be overdriven to each logic

Parallel /O

state with the I/O module. For electromechanical devices such
as keys and switches, interaction with the person performing a
test may be required. Switch testing can be automated by using
solenoids to actuate the switches.

Discrete I/O

Components used for discrete I/O include buffers, latches,
addressable latches, and flip-flops. Such components usually
have simpler interfaces to the microprocessor than
programmable LSI components and they are handled in a similar
manner, but their initialization procedures are different, if
required at all.

If data does not appear to be reaching I/O latches, or is not read
from 1/O buffers, it may be necessary to check the address
decoding logic to verify that the proper control signals are
present. Here are some common problems associated with
discrete I/O:

® Outputs may be loaded by external devices. Such outputs
may work properly when disconnected. The loading
problem may be associated with the external device, or
with its connector.

¢ Inputs may be damaged by static electricity when they are
disconnected from the signal sources and left unprotected.

® Clocked inputs on components like latches or flip-flops
may be faulty.

® Reset inputs may either be stuck, forcing outputs to some
state, or open, preventing circuits from being initialized.

® Pullup or pulldown resistors that establish static logic
levels may be open, creating indeterminate inputs.

4-117

Parallel I/O

Parallel I/O Example 4.5.3.

The Programmable Interface Adapter on the Demo/Trainer UUT
(U31) is shown in Figure 4-44. It can be programmed for
operation with three ports, each with eight data lines. Each port
is addressed for read or write by address lines IAO1 and TAO2.
Ports A (lines PAO-7) and B (lines PB0-7) are used for outputs
to the two on-board seven-segment LEDs. Port A corresponds
to the upper LED, port B corresponds to the lower LED, and
port C (lines PCO-7) is used for inputs from the four push-
button switches.

Keystroke Functional Test 454.

4-118

Part A:

1.

Initialize the Parallel I/O functional block using the WRITE
key with the following commands:

WRITE DATA 89 TO ADDR 4006
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4000
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4002
(ADDR OPTION: I/O BYTE)

Use the WRITE key to write values to the PIA chip. Read
the resulting numbers on LED A. The values to be written
and the results to be displayed are shown in the Response
table in Figure 4-44.

WRITE DATA <see response table> TO ADDR 4000
(ADDR OPTION: I/O BYTE)

Now use the WRITE key to write values to the PIA chip to
display numbers on LED B. The values to be written and
the results to be displayed are shown in the Response table
in Figure 4-44.

Parallel 11O

WRITE DATA <see response table> TO ADDR 4002
(ADDR OPTION: I/O BYTE)
Part B:
1. Use the READ key to read values resulting from pressing the
UUT keys 1 through 4. The response table in Figure 4-45
shows the values that should be read for each key pressed.

READ ADDR 4004 = <see response table>
(ADDR OPTION: I/O BYTE)

4-119

Parallel I/O

Keystroke Functional Test (Part A)

CONNECTION TABLE

TEST ACCESS SOCKET

STIMULUS AND RESPONSE TABLE FOR LEDA

STIMULUS AND RESPONSE TABLE FOR LEDB

4-120

Parallel I/O

+5v +5W +5v 5V
AEADY 4, TK 47K 4.7k a4.7K
2
CIAGUIT s Tes A ?aa
1] 1 k)
82554 . I
F'C-"I[=l | i - |
P13 | I
| T (Y B 1 1
pra il J s t] ES) |:| 53 l‘_‘sa |j
pral 13 _HC 7
pos, 12 NC 2 2 z 2
i NG
pos[1e_ne L PuskBUTTON SHITCHES
] A
| BUS
1 R11 330
| BUFFER
1 Ls24s Riz 330
pEO L8 2 [1a1
1402 B lay pey 2 2 1iaz A13 330
[e IR0 9 g PRz B0 B |43 1
P3| 21 8 liaa A4 330
o 1000 34 lg poal 22] zns
D01 33] 2 zaz A5 330
= ooz 32 | pas 24 5] 3n3 ER iyt
203 Sihs pey| 25 E A1 330
- 04 16
__Elg {18]sE A17 330
R 28 g % L 46
27 b7 A8 330
Ls24a4
Panl_t 2 l1a1 8
E gts PAd 142 1va[1E
Az & f1a3 1valld
| IFEAD _ |8 Jap paal L B aaa ava| 12 —
I Paal 12l oay gyylS | 1 R 330
o LRAITE 26 o pas| 32 3laaz ave |
Sag| 38 5|ana 2va|o A23 330
35 qeser pa?| 30 7]aaa aval3 E e
o 416] RZ24 330

2 15
J;' . A28 330

1 R28 330 o 4,

—

- |
] ! Vs o 2
ADr_JLaOEUscs | JFPTsCT | R L use | L1 AR o b ldied ey
DECODE | R27 330 -

CLOCK AMD RESET |-w-PESET , A30 330

- P R

HRS0BZ2-T610

Figure 4-44: Parallel I/O Functional Test (Part A)

4-121

Parallel I/O

Keystroke Functional Test (Part B)

CONNECTION TABLE

51 TEST ACCESS SOCKET
52

53
54

STIMULUS AND RESPONSE TABLE FOR LEDA

4-122

Parallel I/O

| 5V +3V +5V +5v
READY 47K 4. 7K 4.7K L
CIACUIT % a6
L B2554 h
PCOLS
&
80286 it
MICROPADCESSOR FC3
g : | PO
PCY
Fee 47 PUSH-BUTTON SWITCHES
| LEDB
| BUS L A1 3m0 Lo, QU7
BUFFER i _“
Lgads g R12 330 o 43 g
LIEL 2 lgns 1ys| 1B | ¢
1A02 8 19) S ival1E
[e IA02 B PB1 142 1Y A3 330
- 1401 Y pEal 20 B | 143 1va Sy G T RS P
pEaL 2l 8 1iae 1yl ey R24 330 4 5 4 | +5v
- pea 22 llaas @ys W2 BG4y 1a
= e 13 pn py2 |_1 A15 330 5 7 4 3
i~ (L 15 1 z43 pyal > Fnnne————— 4 ¥
pa7 23 A7) zna gyald , RI1E 330 5 o
- i 1476 A
o L Fﬁ 26 L RA17 330 5 4,
- L CHEER TS
A A1 330
LS2as 1 ARG 26 o
paglt 2 lias 1yaldB HESOAZ-TELD
patf 2 2 a2 1v2lie |
pazl—2 5 {143 1v3pld | LEDA
Pazt 8 1 iaa tyall2 | [
paald0 11241 2Y1 1 A8 330 5 4 2ige
pas[35 A2 oz eyall 1
PAE g? ? 243 273 g o1 PRS0 e a3 by
Pa7 2A4 2Ya S
L 16 R 3 F24 330 5 49 g
| pEl=m ¢
- 1 "uae | aes 330
ADOAESS swz-2 | — b TR Q_MK_ 14| *EY
e |
DECODE _Zo/aij | y FET 380 5 5 o | 3
] 1 g
7 AEB 330
: 22ty
T '"i | I ; AeE 330 . g,
CLOCK AND RESET |wrEsEl | [-
HPSQB2-7610

Figure 4-45: Parallel I/O Functional Test (Part B)

=

4-123

Parallel 110

Programmed Functional Test 45.5.

The test_pia program is the programmed functional test for the
Parallel I/O functional block. The program asks the test operator
to check the visual properties of the LEDs that are driven by the
PIA chip and also to check the mechanical operation of the
pushbutton switches.

The program displays a message to the operator to watch LED A
while the program displays numbers 1 through 9 on it. The
operator is prompted to acknowledge proper operation or failing
operation. If the LED fails, the gfi test command is used to test
the LED drivers. If the LED drivers fail, GFI takes control and
backtraces to the source of the failure. The same operation is
then repeated for LED B.

Next, the operator is prompted to press key 1. The program

polls the PIA chip and determines when the operator has pushed

the key 1 button (if the key and the PIA are working properly).

If the PIA cannot sense that the operator has pressed the key, the "
operator is instructed to press a 9100A/9105A key to indicate a w
failure. When the operator indicates a failing key, the gfi test

command is used to verify correct signal levels at the key output.

If a failure exists, GFI takes control and backtraces to the source

of the failure. The same operation is repeated for keys 2, 3 and

4,

program test pia

! FUNCTIONAL TEST of the PARALLEL I/O functional block.

1

1 1

! This program tests the PARALLEL I/0 functional block of the !
! Demo/Trainer. The two LEDs and the four pushbutton switches are

! tested. The test operator is prompted to visually inspect the LEDs !

! as the LEDs count a series of numbers. !

1

1

1

1

1

keys (key number) Test Demo/Trainer pushbutton
key key number. Prompt test
operator to push the key.

1

1

1

1

1

1

1

! TEST FUNCTIONS CALLED:
1

1

1

1

! leds (led addr, led name) Test Demo/Trainer LED led name!
! which is driven by the PIA and!
! has the address led addr.

1

Parallel 110

function keys (keynum)

declare numeric keynum ! Number of key to test.
declare string norm = "\1B[Om" ! Normal video escape string
declare string rev = "\1B[0;7m" ! Reverse video escape string

declare string entry
declare string fail = v
declare global numeric tlb
declare global numeric tli

mask = setbit (keynum - 1)

loop until fail = chr(SD) ! loop until YES key
print on tlb ,"\nlPress ", rev," UUT KEY ", keynum,” *,norm," pushbutton"
print on tlb ,*Press any 9100 key if test is stuck”
loop until (poll channel tli, event “input®) =1
if ((read addr $4004) and mask) = 0 then return

end loop

loop until (pcll channel tli, event "input") =0 ! Flush input buffer
input on tli ,entry

end loop

print on tlb ,"\nlPress ",rev,"™ YES *,norm," to fail KEY ", keynum," test,"
print on tlb ,"Press "+rev+" NO "+norm+" to continue key test,"
input on tili ,fail

end loop

print on tlb ,"\nl\nl"

fault ! Fail Key test (set termination
end function ! status of function to fail.

function leds(led_addr, led name)
declare numeric led addr
declare string led name
declare string key

declare string norm = "\1B[Om"
declare string bold = "\1B{1m"
declare string rev = "\1B{7m"

declare string clear screen = "\1B[2J"

declare string no_auto_linefeed = "\1B[20h"
declare global numeric tli
declare numeric array [0:10] numbers

numbers {[0] = $CO
numbers [1] = $F9
numbers [2] = $A4
numbers [3] = $BO
numbers [4] = $99
NO = chr ($7F)

numbers [5] = $92
numbers [6] = $82
numbers [7] = $F8
numbers [8] = $80
numbers [9] = $98
YES = chr{ $D)

P

print norm, clear screen, "Watch LED ", led name, " count”
print "Press ", rev, " ENTER *, norm, * key to start LED counting."
input key
print clear_ screen
for 1 =0 to 9
write addr led addr, data numbers [i]
wait time 500
next

Parallel 1/O

write addr led addr, data $7F
print clear_screen, "\1B[201"
print "™\1B{1;1fDid LED ", led_name, " display ALL segments off, then"
print *\1B[2;1fdigits 0 to 9, then only the Decimal Point 2*
print *\1B[3;fpress: "+rev+"* YES "+norm+" or "+rev+" NO "+norm
loop until key = YES or key = NO
| input on tli ,key
/ if key = NO then fault
end loop
% write addr led addr, data $FF \ print no_auto_linefeed,clear screen

end function

tlb open device "/terml*, as "update", mode "buffered”
tli open device “/terml”, as "input", mode "unbuffered"
execute pia init ()

if leds {54000, "A") fails then fault *PIA LED A failed' \ return
if leds{$4002, "B") fails then fault 'PIA LED B failed' \ return

if keys(l) fails then fault °*PIA KEY 1 failed® \ return
if keys(2) fails then fault °'PIA KEY 2 failed' \ return
if keys(3) fails then fault 'PIA KEY 3 failed' \ return
if keys(4) fails then fault 'PIA KEY 4 failed' \ return
end program
Stimulus Programs and Responses 4.5.6.

Figure 4-46 is the stimulus program planning diagram for the
Parallel I/O functional block. The Parallel I/O stimulus
programs only measure the electrical parameters of the Parallel
/O circuit; the visual properties of the LEDs are not measured.

The ram_data stimulus program outputs data from the PIA onto
the data bus. The pia_leds stimulus program exercises outputs
going to the LEDs. The key I, key 2, key 3, and key_ 4
stimulus programs monitor the operation of the four numbered
pushbutton switches.

All the stimulus programs execute the pia_init program before
any measurements are made on the PIA circuitry.

Parallel /O

(This page is intentionally blank.)

4-127

Parallel I/O

Stimulus Program Planning

:

PROGRAM: KEY_1

EXECUTES PIA_INIT AND MONITORS LEVELS AND
TRANSITIONS AFTER PROMPTJNG THE OPERATOH
TO PRESS KEY 1 St

MEASUREMENT AT:

R5-1 INITIALIZATION PROGRAM: PIA_INIT

INITIALIZES THE PIA PORT

MEASUREMENT AT:

(MOMNE])

4-128

Parallel I/O

READY
CIRCUIT

HOZ2BE
MICROPROCESSOR

b

ADDRESS
OECODE

CLOCK AND AESET

Figure 4-46: Parallel I/O Stimulus Program Planning

RESET

B255a

pooie [=

pCyfld

E

sc3| L7

preld
pon

PCE
PC7

zlzlzz
nlhlnls

o is [

+5Y 5y 45V +5v

7
e, 2 2 2
(9 PUSH-BUTTON SWITCHES
LEDZ
Ai1 330 b
™
A12 330 13 by,

A13 330
Ai4 330

A15 330

Ri5 330
RL7 330

f1d 330

e &
6 opyg
il

R19 330

AE3 330

HRSOB2-7610

AZ24 330
AZ25 330
A27 330
A28 330
A2% 330

R3O 330

.E‘H_

6 dag
™
HRSOBE-7E10

4-129

Parallel I/O

program key_1

! STIMULUS PROGRAM checks KEY 1 of PIA circuit. i
1 t
! stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: |
! pia_init () !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
I Local Constants Modified: !
! CARRAGE_RETURN Matches a carrage return input. !
1 1
! Local Variables Modified: !
! devname Measurement device !
! input_str Input from keypad !
! state Level returned from measurement !
! finished State of loop looking for condition !
TrrrtrrT It LILELLILILIRRIIOTIOLILIOIOTTIII T I IR RILIPIIILILIITIGTI RIS RITI I LI EIIITIERIIIIIITILILILIIIIIIIIILIILILNSL

declare global numeric finished = 0
declare string CARRAGE_RETURN = "*
declare string input_str

declare numeric state = 0

declare numeric high = 4

finished = 0

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31l" then pinnum = 14
else
devname = "/probe"
end if
print "Stimulus Program KeY 1"

(continued on the next page)

Figure 4-47: Stimulus Program (key_1)

Parallel /1O

{ Setup measurement device and prompt operator.

podsetup 'report power' "off"

podsetup 'report forcing' "off"
podsetup ‘report intr' "off"

podsetup ‘report address' "off"
podsetup 'report data' "off"

podsetup ‘report control' "“off"

reset device devname

execute pia_init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode "int"

tlup = open device "/terml", as *update"

! Wait for a high. Leave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then

state = level device devname, type "async"
else

state = level device devname, pin pinnum, type "async®
end if

if (poll channel tlup, event "input®) = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if -
end loop

! Start response capture. End when POD detects reset.
arm device devname
strobeclock device devname
print on tlup ,*"WHILE MEASURING, Press \1B[7mDemo UUT KEY I\1B[Om*
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished =1
if ((read addr $4004) and 1) = 0 then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then finished =1
end if
end loop
readout device devname

print "\nl\nl"
end program

Figure 4-47: Stimulus Program (key_1) - continued

4-131

Parallel /O

STIMULUS PROGRAM: KEY 1

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG IVL IVL Mode Counter Range
R5-1 PROBE 0002 1 O TRANS
R3-1 1/0 MODULE 0002 1 O TRANS

Figure 4-48: Response File (key_1)

78 BYTES

Priority
Pin

Parallel I/O

program key 2

trottetrtrrrr LRI LI I IOTIII I IR LIILILII I I RIRLIII LTI LIRIEIIIIIIILILILITLEIEIIIIILTY

STIMULUS PROGRAM checks KEY 2 of PIA circuit.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

TEST PROGRAMS CALLED:
pia_init ()

GRAPHICS PROGRAMS CALLED:
{none}

Local Constants Modified:
CARRAGE, RETURN Matches a carrage return input.

Local Variables Modified:

devname Measurement device

input_ str Input from keypad

state Level returned from measurement
finished State of loop looking for condition

! Main Declaratiens !
L0000 O A O A 1 A A T O O O A ¢

declare global numeric finished = 0
declare string carrage return = ""
declare string str

declare numeric state = 0

declare numeric high = 4

finished = 0

trrrrrrrppbIt IR ELILLOLILILIOLIPITILI IR I LI LILILILIOLILIIILI RIS LI T LI TIORILI RIS EILIIIITISITIGELIIIIIITILILILIILIILITLTY

! Main part of STIMULUS PROGRAM
Trrrrrrrrrrrrrnrr LTI TIOIIIRE R RICEREILILILILILIOYILILIESLRILEILITILIITIGLEILITTITTITITTITLTIT RIS TITTITITITLEILITIREITILITTITILIIIIIIIOGLGY

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31" then pinnum = 15
else
devname = "“/probe”
end if
print "Stimulus Program KEY 2"

(continued on the next page)

Figure 4-49: Stimulus Program (key _2)

Parallel J/O

! Setup measurement device and prompt operator.

reset device devname

execute pia init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode "int®*

tlup = open device "/terml", as "update"

! Wait for a high. ILeave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname
if devname = "/probe" then
state = level device devname, type "async"
else
state = level device devname, pin pinnum, type "“async®
end if
if (poll channel tlup, event "input”) = 1 then
input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when PIA detects line low.

arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 2\1B{Om*
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished =1
1f ((read addr $4004) and 2} = O then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if {poll channel tlup, event "input")} = 1 then
input on tlup ,str
if str = carrage_return then finished =1
end if
end loop
readout device devname

print "\nl\nl*
end program

Figure 4-49: Stimulus Program (key_2) - continued

4-134

Parallel 1/0

I STIMULUS PROGRAM: KEY 2

DESCRIPTION: SIZE: 78 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
R6-1 PROBE 0002 1 O TRANS
R6-1 1/0 MODULE 0002 1 0 TRANS

Figure 4-50: Response File (key_2)

4-135

Parallel I/O

program key 3

Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !
activity and the respense file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

TEST PROGRAMS CALLED:
pia_init ()

Local Constants Modified:
CARRAGE RETURN Matches a carrage return input.

Local Variables Modified:
devname Measurement device
input_str Input from keypad
state Level returned from measurement

1

1

1

1

1

1

1

1

1

!

! GRAPHICS PROGRAMS CALLED:
1

1

!

1

1

1

1

1

1

! finished State of loop looking for condition
1

1
1
1
i
1
1
1
1
1
1
1
(none) !
1
1
1
1
1
!
1
1
1
!

! Main Declarations !
Trrprrtrnprrb L ELLLOLLLLOLOLR R RONLIOLILIOEIOLEOEILIOERIOEILILILIOTITLITPTIRITYRILITITTITLITTIT LI RITREITTITTITTILITITITIRITILIIIIIIIILIL

declare global numeric finished = 0
declare string carrage_return = "*
declare string str

declare numeric state = 0

declare numeric high = 4

finished = 0

Trrrrrrrrrrprrn I rI R TR RtL LI IOPIOLII I I TIOGRRIRLILIIIIIIRIRIIIIIIOGI I TIGLITTITLITTITITTIT T IL et riitn

! Main part of STIMULUS PROGRAM
SRR R R S NS N R R N R R N R N R R R RO E O SRS E R R RS

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfl device
if (gfi ref) = "U31" then pinnum = 16
else
devname = "/probe"
end if
print "Stimulus Program KEY 3"

(continued on the next page)

Figure 4-51: Stimulus Program (key_3)

4-136

Parallel 1/O

! Setup measurement device and prompt operator.

reset device devname

execute pla init ()

setspace space (getspace space "i/o", size "byte"}
sync device devname, mode “int"

tlup = open device "/terml", as "update"

! Wait for a high. Leave program 1f <ENTER> key 1s pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then
state = level device devname, type "async”
else
state = level device devname, pin pinnum, type "async®
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when POD detects reset.
arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 3\1B[Om"
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished = 1
1f ((read addr $4004) and 4) = 0 then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage_return then finished = 1
end if
end loop
readout device devname

print "\nl\nl"
end program

Figure 4-51: Stimulus Program (key_3) - continued

4-137

Parallel I/O

STIMULUS PROGRAM: KEY 3
DESCRIPTION:

SIZE:

Response Data

Nede Learned Async Clk Counter
Signal Src With SIG IVL I1VL Mode Counter Range
R7-1 PROBE 0002 1 0 TRANS
R7-1 I/Q MODULE 0002 1 0 TRANS

Figure 4-52: Response File (key_3)

78 BYTES

Priority
Pin

Parallel I/O

program key 4

! STIMULUS PROGRAM checks KEY 4 of PIA circuit. !
1 1
! Stimulus programs and response files are used by GFI to backtrace i
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! pia_init () !
! !
! GRAPHICS PROGRAMS CALLED:

! {none} !
1 1
! Local Constants Modified: !
i CARRAGE RETURN Matches a carrage return input. i
1 1
! Local Variables Modified: !
! devname Measurement device !
f input_str Input from keypad !
! state Level returned from measurement !
! finished State of loop looking for condition !
TrrrrrrrrrrLbLLL LRI LY LCRBRELLLOLLOLLI LI LTI OO RIOEIELI RO LI LI LTI RITTRITLITRITITITTITTITLTITEITTITTITIEIYLITIITTITIErtrtrrngy

! Main Declarations
trrrrrrrrtttrrrn bt IIILLIILIILTELILILILILIOLIITI I LI EILILILI IO I IO ERELIOTILI LI I EIIGITITITILITITILITIIGEELLn

declare global numeric finished = O
declare string carrage return = ""
declare string str

declare numeric state = 0

declare numeric high =

finished = 0

TrrrrrrrrrrLLbLLLCELIILIOLC LI L RICLEOLI LI IO ITI LI LILI LI BRI RILIOITI I I LTI EITTIGLIIOIGIITIRIRILIIIIOIILILIORIRLILIILIIILTTYD

! Main part of STIMULUS PROGRAM
ISR SR R N R N R R R RN R R N R R R A R SRR R AN S

! Tet GFI determine the testing device.

if {(gfi control) = "yes" then
devname = gfi device
if (gfi ref) = "U31" then pinnum = 17
else
devname = "/probe”
end if
print "Stimulus Program KEY 4"

(continued on the next page)

Figure 4-53: Stimulus Program (key 4)

Parallel I/0

! Setup measurement device and prompt operator.

reset device devname

execute pia init ()

setspace space {(getspace space "i/o", size "byte*)
sync device devname, mode "int"

tlup = open device "/terml", as "“update"

! Wait for a high. Leave program if <ENTER> key is pressed.

loop until state = high
arm device devname \ readout device devname

if devname = "/probe" then

state = level device devname, type "async"
else

state = level device devname, pin pinnum, type "async"
end if

if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage return then return
end if
end loop

! Start response capture. End when BOD detects reset.
arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 4\1B[Om"
print on tlup ,"Press 39100 ENTER key if test is stuck.”
loop until finished =1
if ((read addr $4004) and 8) = O then
wailt time 2 ! De-bounce.
strobeclock device devname
finished = 1
else if (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage return then finished =1
end if
end loop
readout device devname

print "\nl\nl®"
end program

Figure 4-53: Stimulus Program (key_4) - continued

4-140

Parallel I/O

STIMULUS PROGRAM NAME:

KEY 4
DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG IVL IVL Mode Counter Range
R8-1 PROBE 0002 1 0 TRANS
R8-1 I/0 MODULE 0002 1 0 TRANS

Figure 4-54: Response File (key_4)

78 BYTES

Priority
Pin

4-141

Parallel /O

program pia data

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !

! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to 1
resynchronize the bus controller and the pod. !

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

! .
! TEST PROGRAMS CALLED: 1
! recover () The 80286 microprocessor has a!
! bus controller that is totally!
! separate from the pod. In '
! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program !
! resynchronizes the pod and the!
! bus controller. !
1

1

1

]

1

1

1

1

1

1

1

1

1

1

pia_init () Initalization program for the
8255. Sets port A and B to
output with port C to input.

GRAPHICS PROGRAMS CALLED:
{none}

! Tocal Variables Modified:
devname Measurement device

! Global Variables Modified:
recover times Reset to Zero

(continued on the next page)

Figure 4-55: Stimulus Program (pia_data)

4-142

Parallel 110

trrrrrrrrrrLLERLLLLLIOLLELLOLILIOE LRI EG R LIOLILIEILI LRI RIGRILILIOLI LIS LIERILIOLII LTI EITLIOTI IO LI LISLIRITEILITITTIITIIIIIILIIIITLY

! FAULT HANDLERS:
RN S R R R R R R R RS RN RS SO R R AR R RN

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout_recovered
recover (}

end handle

declare global numeric recover times
recover _times = 0

! Let GFI user select which I/0O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program PIA DATA"

Initialize the PIA and setup the measurement device.

reset device devname

pia_init ()

setspace space (getspace space "i/o", size "byte")

write addr $4002, data $AA ! set port B to known value.
sync device devname, mode "pod"

sync device */pod", mode "data"

Present stimulus to the UUT, read PIA port B register onto data bus.
arm device devname ! Start response capture.

read addr $4002 ! read port B

write addr $4002, data $55

read addr $4002
readout device devname ! End response capture.

end pia_data

Figure 4-55: Stimulus Program (pia_data) - continued

4-143

Parallel 1/O

STIMULUS PROGRAM NAME: PIA DATA
DESCRIPTION: SIZE: 326 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL IVL Mode Counter Range Pin
U31-34 PROBE 0003 TRANS
U31-34 I/0 MODULE 0003 TRANS U21-5
U31-33 PROBE 0004 TRANS
U31-33 I/0 MODULE 0004 TRANS U21-5
U31-32 PROBE 0003 TRANS
U31-32 I/0 MODULE 0003 TRANS U21-5
U31-31 PROBE 0004 TRANS
U31-31 I/0 MCDULE 0004 TRANS U21-5
U31-30 PROBE 0003 TRANS
U31-30 I/0 MODULE 0003 TRANS U21-5
U31-29 PROBE 0004 TRANS
U31-29 I/0 MODULE 0004 TRANS U21-5
U31-28 PROBE 0003 TRANS
U31-28 I/0 MODULE 0003 TRANS U21-5
U31-27 PROBE 0004 TRANS
U31-27 I/0 MODULE 0004 TRANS U21~-5

Figure 4-56: Response File (pia_data)

4-144

Parallel I/0

program pia leds

Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UJT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

This Stimulus program uses rampdata at the PIA output port addresses
! to toggle port B.

pia_init () Initalization program for the !
8255. Sets port A and B to
output with port C to input.

GRAPHICS PROGRAMS CALIED:
(none)

1 1
1 1
1 1
1 1
1 1
i 1
1 1
1 1
1 1
! !
{ TEST PROGRAMS CALLED: !
i 1
1 1
1 1
1 1
1 1
1 1
1 1
! Local Variables Modified: !
! devname Measurement device

1 1

! Let GFI user select which I/0 module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program PIA LEDS"

! Initialize the PIA port and setup measurent device.
reset device devname
execute pia_init ()
setspace space (getspace space "i/o", size "word")
sync device devname, mode "pod"
sync device "/pod", mode "data"
! Present stimulus to the UUT
arm device devname ! Start response capture.
rampdata addr $4000, data ©, mask SFF
rampdata addr $4002, data 0, mask SFF

readout device devname ! End response capture

end pia_leds

Figure 4-57: Stimulus Program (pia_leds)

4-145

Parallel I/O

STIMULUS PROGRAM NAME: PIA LEDS
DESCRIPTION: SIZE: 1,134 BYTES

Response Data

Nede Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U31-4 I/0 MODULE EFF7 10 TRANS
U31-3 I/0 MODULE 7628 10 TRANS
U31-2 I/0 MODULE 790E 10 TRANS
U31-1 I/0 MODULE 49CB 10 TRANS
U31-40 1/0 MODULE CO4E 10 TRANS
U31-39 I/0 MODULE 1D3A 10 TRANS
U31-38 I/0 MODULE AlC7 10 TRANS
U31-37 I/0 MODULE 63EB 10 TRANS
U31l-18 I/0 MODULE D37A 10 TRANS
U31-19 I/0 MODULE Al121 10 TRANS
U31-20 I/0 MODULE 6AFA 10 TRANS
U31-21 I/0 MODULE BSFC 10 TRANS
U31-22 I/0 MODULE A71E 10 TRANS
U31-23 I/0 MODULE DAF9 10 TRANS
U31-24 I/0 MODULE 23EF 10 TRANS
U31-25 I/0 MODULE 2F53 10 TRANS
U46-18 PROBE D37Aa 10 TRANS
U46-18 I/0 MODULE D37A 10 TRANS
Ud6-16 PROBE Al21 10 TRANS
U46-16 I/0 MODULE Al21 10 TRANS
U46-14 PROBE 6AFA 10 TRANS
U46-14 I/0 MODULE 6AFA 10 TRANS
U46-12 PROBE B5FC 10 TRANS
U46-12 I/0 MODULE BSFC 10 TRANS
U46-9 PROBE A71E 10 TRANS
U46-9 I/0 MODULE A71E 10 TRANS
U46-7 PROBE DAF9 10 TRANS
U46~7 1/0 MODULE DAF9 10 TRANS
U46~5 PROBE 23EF 10 TRANS
U46-5 I/0 MODULE 23EF 190 TRANS
U46-3 PROBE 2F53 10 TRANS
U46-3 I/0 MODULE 2F53 10 TRANS
U32-18 PROBE EFF7 10 TRANS
U32-18 I/0 MODULE EFF7 10 TRANS
U32-16 PROBE 7628 10 TRANS
U32~16 I/0 MODULE 7628 10 TRANS
U32-14 PROBE 790E 10 TRANS
U32-14 I/0 MODULE 790E 10 TRANS
U32-12 PROBE 49CB 10 TRANS
U32-12 I/0 MODULE 49CB 10 TRANS
U32-¢ PROBE CO4E 10 TRANS
U32-9 I/0 MODULE CO4E 10 TRANS

(continued on the next page)

Figure 4-58: Response File (pia_leds)

4-146

Parallel 1/0

U32-7 PROBE 1D3A 10 TRANS
U32-7 I/0 MODULE 1D3A 10 TRANS
U32-5 PROBE AlC7 10 TRANS
U32-5 I/0 MODULE A1C7 10 TRANS
U32-3 PROBE 63EB 10 TRANS
U32-3 I/0 MODULE 63EB 10 TRANS
R11-2 PROBE 4596 1 TRANS
R12-2 PROBE 4596 1 TRANS
R13-2 PROBE 4596 1 TRANS
R14-2 PROBE 4596 1 TRANS
R15-2 PROBE 4596 1 TRANS
R16-2 PROBE 4596 1 TRANS
R17-2 PROBE 4596 1 TRANS
R18-2 PROBE 4596 1 TRANS
R19-2 PROBE 4596 1 TRANS
R23-2 PROBE 4596 1 TRANS
R24-2 PROBE 4596 1 TRANS
R25-2 PROBE 4596 1 TRANS
R27-2 PROBE 4596 1 TRANS
R28-2 PROBE 4596 1 TRANS
R29-2 PROBE 4596 1 TRANS
R30-2 PROBE 4596 1 TRANS

Figure 4-58: Response File (pia_leds) - continued

4-147

Parallel I/O

program pia init

INITIALIZATION PROGRAM to set up the PIA.

1
i
TEST PROGRAMS CALLED: !
(none) !
1
!
1

GRAPHICS PROGRAMS CALLED:

{none)
IR N N N RN RN NN

1
1
1
1
1
1
1
!

! set address space

setspace space (getspace space "1/o", size "byte")

! Initialize the PIA port

write data $89, addr $4006 ! SET CONTROL REG
write data $FF, addr $4000 ! CLEAR THE A REG
write data $FF, addr $4002 ! CLEAR THE B REG

end pia_init

Figure 4-59: Initialization Program (pia_init)

4-148

Parallel I/O

Summary of Complete Solution for
Parallel I/O 4.5.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Parallel I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
{Complete File Set for Parallel 1/O)
Programs (PROGRAM):
TEST_PIA Functional Test Section 4.5.5
PIA_DATA Stimulus Program Figure 4-55
PIA_LEDS Stimulus Program Figure 4-57
KEY_1 Stimulus Program Figure 4-47
KEY_ 2 Stimulus Program Figure 4-49
KEY_3 Stimulus Program Figure 4-51
KEY 4 Stimulus Program Figure 4-53
PIA_INIT Initialization Program Figure 4-59
Stimulus Program Responses (RESPONSE):
PIA_DATA Figure 4-56
PIA_LEDS Figure 4-58
KEY_1 Figure 4-48
KEY_2 Figure 4-50
KEY_3 Figure 4-52
KEY_4 Figure 4-54
Node List (NODE):
NODELIST Appendix A
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix B
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-149

Parallel I/O

(This page is intentionally blank.)

4-150

Serial 1/0

SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK 4.6.

Introduction to Serial /0 4.6.1.

The block diagram in Figure 4-60 shows a typical serial I/O port
implemented with a UART (universal asynchronous receiver-
transmitter) surrounded by its direct support circuitry. For the
UART to function properly, all of the support circuitry in Figure
4-1 must function properly.

SIA (serial interface adaptor) chips typically implement all of the
UART block and most of the clock and interrupt blocks. On the
Demo/Trainer UUT, address decoding and interrupt generation
circuits are grouped as separate functional blocks and are
described later in Sections 4.11 and 4.13.

Considerations for Testing and
Troubleshooting 4.6.2.

Testing
The external I/O lines can be divided into two types:

A Serial lines.
b Handshake and control lines.

Testing the handshake lines is straightforward. The status of
input handshake lines can usually be checked by reading a
register and testing the appropriate bit. Similarly, output
handshake lines can be toggled by setting and clearing a bit in an
output register. Testing can be done using the probe or by
connecting output lines back to input lines. Some SIA chips
need initialization before they respond properly.

Testing the serial input and serial output lines is usually done by
connecting the output back to the input. On the Demo/Trainer
UUT, this can be done by setting switches. In general, it is

4-151

Serial /0

From
Microprocessor

Address Clock
Decoding (Baud Rate Generator)
A A
UART Line Drivers

(With Status Register) |

and Receivers

—»

External VO
l¢———

A

Interrupt

Generation

Figure 4-60: Typical Serial /O Port, With Support Circuitry

4-152

Serial I/O

preferable to wire a connector to perform the loopback. This
allows testing the entire interface, including the connector.

UART chips provide data buffers on their inputs. Therefore,
characters can be written to the output side of the UART and the
read at the input side. If this technique is used, two limitations
should be kept in mind:

. Since the input and output baud rates are usually derived
from the same clock, loopback testing will not test for
proper baud-rate timing,.

b The UART must be initialized with the same transmit and
receive baud rate.

One approach to testing the baud rate clock frequency is to set up
the transmitter to send seven bits with no parity. Under these
conditions, when a null character (00 hex) is sent, the result will
be a pulse that is high for eight bit times (start bit and seven data
bits). If the probe is connected to a known-frequency clock
signal and the start and stop lines are connected to the serial
output, the baud rate can be computed. The start line should
cause counting to start on the first bit and the stop line should
stop the count at the end of the last bit. For example, on the
Demo/Trainer UUT, the 8 MHz clock on U1-5 (Figure 4-61)
can be probed and the start and stop lines from the clock module
can be connected to one of the serial output pins (U13-8 or U12-
7). Eight bits at 1200 baud (8/1200 sec) counting 8 MHz the
result should be about 53,333 (D055 hex) counts.

The procedures above do not test the interrupt generation block.
This circuitry, which is described in detail later in Section 4.13,
can be tested by individually enabling the interrupts that are of
interest and then stimulating them by exercising the UART. For
example, to test the character-received interrupt, perform the
following steps:

1. Initialize the interface.

2. Enable the receiver interrupt (usually a bit in a
command register).

4-153

Serial /O

3. With loopback wired, send a character.

4. Verify that the pod received an interrupt using the
readstatus TL/1 command. (This assumes that the
interrupt stays active until serviced.)

Here are some potential problems in testing serial I/O ports:

® The I/O module may load a crystal oscillator enough to
shift the frequency or make it stop oscillating.

® Some SIA chips will not send characters if their handshake
lines are in the wrong state.

® If a loopback test cannot be performed on your UUT, you
can use the RS-232 port on your 9100A/9105A to test the
serial I/O port on the UUT.

Troubleshooting

4-154

The central element of a serial I/O port is the UART or SIA chip.
If troubleshooting is started by clipping the UART, the problem
should be easily isolated. The UART either receives or
generates signals from all of the other circuit blocks. If all
inputs to the UART are good and all outputs are bad, the UART
is bad or its outputs are loaded. If an input is bad, the problem
can be traced into the circuitry that generated it. All of this is
done automatically in GFI.

The serial input and output can be evaluated by writing a series
of characters and counting transitions. The Demo/Trainer UUT
stimulus programs for the serial I/O block work this way.

The Demo/Trainer UUT has built-in switches that loop the serial
outputs back to the inputs. If GFI troubleshooting is done with
the loopback in place, the nodelist must show this connection; if

Serial /O

loopback is done at the connector, the appropriate pins of the
connector can simply be shown on the same node.

The probe has a special threshold level for testing RS-232
signals, which is set up with the TL/1 command:

threshold device "/probe", mode "rs232"
or the operator's keypad command:
SET PROBE LOGIC INPUT LEVEL TO RS232.

If a part has RS-232-level signals, it should be specified as a
probe device in the reflist for the UUT.

The gfi control TL/1 command determines when a stimulus
program is under GFI (or UFI) control. There are many
examples of its use in the stimulus programs that follow. When
a program is under GFI (or UFI) control, the gfi reference
function will return a string describing the device being clipped
or the pin being probed. The following TL/1 example shows
how the gfi ref command could be used in a stimulus program
to change the threshold levels if the components to be tested
require such a change.

if (gfi control) = "yes" then
str = gfi ref
if ((str = "U1l2~14") or {(str = "U1l2-7")) then
threshold device "/probe”, mode "rs232"
else
threshold device "/probe™, mode "ttl"
end if
end if
Serial /O Example 4.6.3.

Figure 4-61 shows the serial I/O port on the Demo/Trainer
UUT. The DUART (dual universal asynchronous receiver-
transmitter), U11, receives serial data input from the keyboard
(RXDA/TXDA) and handles bidirectional signal flow with the
RS-232 port (RXDB/TXDB). Keyboard input must be at 1200

Serial /O

baud. U12 acts as a level shifter, coupling TTL signal levels on
the Demo/Trainer UUT to RS-232 levels at the serial interface;
U12 uses a charge pump to shift levels from a +5V source.

The keystroke functional test that follows is not a complete test
of the RS-232 circuit. The keyboard receive, port 1 transmit,
and port 2 receive lines are not tested between the loopback
switch and the connectors. Also, the test assumes that the
interrupt functional block is good when testing the INT pin
(U11-24).

Keystroke Functional Test 46.4.

4-156

1. Initialize the Dual UART using the EXEC key with the
following command:

EXECUTE UUT DEMO PROGRAM RS23Z INIT

2. Close switches SW4-4, SW4-5 and SW6-4. Now the
Transmit line (Txd) is looped back to the receive line (RxD)
and transmitting a character on TxD will cause the UART to
receive a character on RxD. Then use the SETUP MENU
key with the following command to turn off reporting of
interrupts: '

SETUP POD REPORT INTR ACTIVE OFF

3. Use the WRITE and READ keys with the following
commands to test Port A of the DUART:

WRITE DATA 45 TO ADDR 2006
(ADDR OPTION: I/O BYTE)
READ ADDR 2006 =
(ADDR OPTION: I/O BYTE)
The value read should be 45.

Serial /O

4. Use the WRITE and READ keys with the following

commands to test the Transmit to Receive loopback of Port

B of the DUART:

WRITE DATA 55 TO ADDR 2016
(ADDR OPTION: I/O BYTE)
READ ADDR 2016 =
(ADDR OPTION: I/O BYTE)

The value read should be 55.

You may need to do the READ step up to three times to get
the expected value, since the read buffer can be stacked

three-deep.

5. Use the WRITE and READ keys with the following
commands to test the RTS to CTS loopback of Port B of the

DUART:

WRITE DATA 0 TO ADDR 201A
(ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 201C
(ADDR OPTION: I/O BYTE)
READ ADDR 201A =
(ADDR OPTION: I/0O BYTE)
Examine the hexadecimal
bit 1 is a 0. Bit 0 is
WRITE DATA FF TO ADDR 201E
(ADDR OPTION: I/O BYTE)
READ ADDR 201A =
(ADDR OPTION: I/O BYTE)
Examine the hexadecimal
bit 1 is a 1. Bit 0 is

value to make sure
the LSB.

value to make sure
the LSB.

4-157

Serial I/0

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SOCKET

STIMULUS AND RESPONSE TABLE FOR DUART PORT A

STIMULUS AND RESPONSE TABLE FOR DUART PORT B

STIMULUS AND RESPONSE TABLE FOR TIMER INTERRUPT

Serial I/O

e
- READY | A3 Hiz ASCII KEYBDARD
CIRCULT NS 7H CONNECTOR
. S5
WEOATA
}—/ 1 HSDATA
W13 u1s S.ew
- _l G
B T uoour
5 | uoont
b B ERTFLD
SHIELD
o BTN
BUS
BUFFER . 410V
B Az pHEo sREE ‘__;;’:
a9k EsK SaK o
5y
RAZz232-C
PORT 1
o
o+

RESET 38
| . B L]
| 37 E
| ADORESS L Swi-s
DECODE ™1 - 1
[

| cLock amd AzsET ‘ Le® Ll
100F 10pF INTERAUPT
KH CIRCUTT
InTH B -
TRTAGT)

Figure 4-61: Serial I/O Functional Test

4-159

Serial 1/0

Programmed Functional Test 4.6.5.

4-160

The test rs232 program is the programmed functional test for
the Serial I/O functional block. This program also tests for
interrupt conditions generated by the Serial I/O circuit.

First, the program initializes the DUART U11 and prompts the
test operator to close the loopback switches which connect Port
A transmit to Part A receive, connect Port B transmit to Port B
receive, and connect Port B Request To Send (RTS) to Port B
Clear To Send (CTS).

Next, Port A is checked by transmitting a character and
examining the receive buffer for the same character.

And finally, a character is transmitted on Port B which also
generates an interrupt condition. Two pod programs called
Jrc_int and rd_cscd are executed to check proper operation of the
interrupt logic. After that, the receive buffer is examined for the
same character that was transmitted. This clears the interrupt
condition. Then the frc_int program is executed again to make
sure the interrupt condition has been cleared. A register in the
DUART is then checked to see that the RTS/CTS loopback
worked properly.

If any of the above operations fail, the gfi fest command is used
to find a failing signal. GFI then takes control and backtraces to
the source of the failure.

If a problem is detected in the interrupt circuit, the s¢_intrpt
program (programmed test of the Interrupt Circuit functional
block) is executed.

Serial I/0

program test rs232

rearms the pod to respond to
the next interrupt.

! FUNCTIONAL TEST of the SERIAL I/0 functional block. !
1 1
! This program tests the SERIAL I/0 functional block of the

! Demo/Trainer. The two RS-232 ports are tested by setting three Dip !
! switches to loop back the two ports (SW4-4, SW4-5 and SWé-4 loop back !
! ports A and B}. The SERIAL I/O functional block also outputs two !
! interrupt request signals. This program also checks the interrupt !
! ecircuitry. !
1 1
! fre int () POD PROGRAM forces repetitive !
! interrupt acknowledge cycles !
1 and returns first interrupt

! vector found on data bus. !
1 1
! rd csed () POD PROGRAM returns the 24 bit!
! interrupt cascade address that!
! was found on the address bus !
! during the last interrupt

! acknowledge cycle.

1 1
! rd_rearm [¢] POD PROGRAM returns the most !
! recent interrupt vector and

1 1
1 1
1

declare
string g ! used to get input from keyboard
global string rev ! Reverse Video escape sequence
global string norm ! Normal Video escape sequence

end declare

function sync buffer(address, data)
declare numeric address
declare numeric data

! Synchronize FIFO buffer in DUART. Write and then read until correct data
! is returned or count has expired.

write addr address, data data ! Transmit Data 31 on port A
wait time $200
cnt =0 \x=0
loop until x = data or cnt > 3
X = read addr address
cnt = cnt + 1
end loop
end function

4-161

Serial 1/0

4-162

! Set interrupt acknowledge cycles on and use the 80286
! pod specific programs rd_rearm(), frc int() & rd_cscd(}.

podsetup ‘report intr' "off"

podsetup ‘'intr_ack on' ! Enable Interrupt Ack. cycles
option = getspace space "i/o", size "byte"

setspace (option)

execute check_loop ()

execute rd rearm(} t Clear interrupts

! Main part of Test. Verify DUART port A.

sync_buffer($2006, $61) ! Synchronize FIFO in DUART for port A

write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200

if ((read addr $2002) and $F) <> $D then fault °'RS232 Port A failed' \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return

write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ((read addr $2002) and $F) <> $D then fault ‘'RS232 Port A failed® \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return

! Verify DUART port B and interrupts.

sync buffer($2016, $61) ! Synchronize FIFO in DUART for port B
write addr $201E, data S$FF ! set output port low
write addr $2016, data $31 ! Transmit Data 31 on port B

if frc int () <> $22 then fault ‘Interrupt failed' \ return

if rd cscd() <> $2016 then fault ‘'Interrupt failed* \ return

if (readstatus() and 8) <> 8 then fault 'Interrupt failed' \ return

if (read addr $2016) <> $31 then fault *'RS232 Port B failed' \ return

if frc int () <> $27 then fault 'Interrupt failed' \ return

write addr $201C, data S$FF

if ((read addr $201A) and 2) <> 0 then fault 'RS232 Port B failed' \ return

end program

Serial I/0

i Stimulus Programs and Responses 4.6.6.

Figure 4-62 is the stimulus program planning diagram for the
Serial I/O functional block. The Serial I/O stimulus programs
require the test operator to close the loopback switches which
loop the transmit lines back to the receive lines and loop the Port
B RTS output back to the Port B CTS input.

The r5232_data stimulus program outputs data from the DUART
onto the data bus. The rs232_[vi stimulus program sends a
character out the transmit line and then monitors RS232-level
signals using the probe with the threshold levels set to "rs232".
The #_Ivl stimulus program is the same as rs232_Ivl except that
signals are measured using a level threshold of "ttI".

All the stimulus programs execute rs232 init before any
measurements are made on the Serial 1/O circuitry.

4-163

Serial I/0

PROGRAM: TTL_LVL

EXECUTES RS232..INIT AND EXERCISES RS-232
CIRCUITRY AT TTL LEVELS

MEASUREMENT AT:

U11-33,14,24,13,15,17
U12-12.9
U13-68

INITIALIZATION PROGRAM: RS232_INIT

INITIALIZES THE DUART

MEASUREMENT AT:

(NONE)

4-164

Serial I/O

READY
CIRCUTT

I

MIC

BOZEE
ROFROCESSOR

Bus
BUFFER

DUART
2681

LESTY

AxDE

ADDRESS
DECODE -J

CLOCK AND BESET e

|

INTR

THOE

5

ASCTT KEYBOAAD
CONNECTOR

JE
HEGATE

HBDATE

TERST

Axpalds

HAX23Z

100F T sver

ny

. TH
Lk}

THEA

T/GIHT

IRTRET

Figure 4-62: Serial I/O Stimulus Program Planning

4-165

Serial 1/O

program rs232_data

STIMULUS PROGRAM for Ull data lines as outputs.

stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to t
resynchronize the bus contreller and the pod. i

1

1

1

TEST PROGRAMS CALLED:
rs232_init () Initialize the RS232 circuit.

recover { The 80286 microprocessor has al
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program 1
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
(none}

Global Variables Modified:
recover times Reset to Zero
devname Measurement device

declare global numeric recover times

(continued on the next page)

Figure 4-63: Stimulus Program (rs232_data)

Serial I/O

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout_recovered
recover (}

end handle

! Main part of STIMULUS PROGRAM

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program RS232_DATA"

! Set addressing mode and setup measurement device.

reset device devname

execute rs232_init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode “pod"

sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname ! Start response capture.
read addr $200A
read addr $201A
read addr $2012
read addr $201A
read addr $2000
readout device devname ! End response capture.

end program

Figure 4-63: Stimulus Program (rs232_data) - continued

4-167

Serial I/O

STIMULUS PROGRAM NAME: RS232 DATA
DESCRIPTION: SIZE: 318 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL IVL Mode Counter Range Pin
Ul1l-18 PROBE 000B 1 0 TRANS
Ul1l-18 I/0 MODULE 000B 1 O TRANS
Ulil-19 PROBE CO0E 1 O TRANS
Ull-19 I/0 MODULE OOOE 1 0 TRANS
Uli-20 PROBE 000A 1 0 TRANS
Ul1~20 I/0 MODULE 000A 1 O TRANS
Ull-21 PROBE 000A 1 0 TRANS
U11-21 I/0 MODULE O000A 1 0 TRANS
Ul1-25 PROBE 000A 1 0 TRANS
Ul1-25 I/0 MODULE CO00A 1 O TRANS
Ul1l-26 PROBE 001Aa 1 0 TRANS
Ull-26 I/0 MODULE O00l1A 1 0 TRANS
U11-27 PROBE 00CF 1 O TRANS
U11-27 I/0 MODULE OOOF 1 O TRANS
Ul1-28 PROBE 001B 1 0 TRANS
Ulil-28 I/0 MODULE 001B 1 O TRANS

Figure 4-64: Response File (rs232_data)

4-168

Serial I/0

program rs232_1lvl

STIMULUS PROGRAM for DUART serial circuits at TTL levels.

Stimulus programs and response files are used by GFI 56 backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
i
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to H
resynchronize the bus controller and the pod.
1
1
1
1
1
1
1
1
1
1
1
t
1
!

TEST PROGRAMS CALLED:
rs232_init () Initialize the RS232 circuit.

check_loop () Check that loop-back switches !
are closed. Prompt if the
switches are not closed.

GRAPHICS PROGRAMS CALLED:
(none)

Local Variables Modified: !
string to accept keypad input.!

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print *Stimulus Program RS232 LVL"

(continued on the next page)

Figure 4-65: Stimulus Program (rs232_i)

Serial 1/0

! Set addressing mode and setup measurement device.

reset device devname

execute rs232_ init ()

setspace space (getspace space "i/o", size "byte")
sync device "/probe", mode "freerun"

thresheold device "/probe", level "rs232%

execute check loop(} ! check if the loop back switches are set.

! Present stimulus to UUT.

arm device devname ! Start response capture.
write addr $2006, data $55 ! Txd port A
write addr $2006, data $D ! Txd port A
write addr $2016, data $55 ! Txd port B
write addr $2016, data $D ! Txd port B
readout device devname ! End response capture.

end program

Figure 4-65: Stimulus Program (rs232_Ivi) - continued

4-170

Serial I/0

STIMULUS PROGRAM NAME: RS232 IVL

DESCRIPTICN: SIZE: 249 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With sIG ILVL LVL Mode Counter Range Pin
Uiz-7 PROBE 10 TRANS 8
Ul2-14 PROBE 1 TRANS 0
J2-3 PROBE 10 TRANS 8
J2-5 PROBE 1 TRANS 0
R22-2 PROBE 1 TRANS 0
Ul2-1 PROBE 1 TRANS
Ul2-2 PROBE 1 TRANS
Cl15-2 PROBE 1X TRANS
Ul2-4 PROBE iX TRANS
C17-2 PROBE 1X0 TRANS
Ul2-6 PROBE X TRANS

Figure 4-66: Response File (rs232_IvI)

4-171

Serial 1/0

program ttl lvl

! STIMULUS PROGRAM for DUART serial circuits at TTL levels. !
1 1
! Stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! rs232_init () Initialize the RS232 circuit. !
1 1
! check loop () Check that loop-back switches !
! are closed. Prompt if the

! switches are not closed. !
1 1
! GRAPHICS PROGRAMS CALILED: !
! {none} !
! !
! Local Variables Modified: !
! q string to accept keypad input.!
! devname Measurement device !
SRR RN N SN N R SN RN R RN RN

declare string q

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print “Stimulus Program TTL_LVL"

(continued on the next page)

Figure 4-67: Stimulus Program (tt_Ivi)’

4-172

Serial 110

‘ ! Set addressing mode and setup measurement device.

reset device devname

execute rs232_init ()

setspace space (getspace space "i/o®, size "byte")
sync device "/probe", mode *pod"

sync device "/pod", mode "data"

threshold device "“/probe", level "ttl"

execute check loop() ! Check 1f loop back switches are closed.
! Present stimulus to UUT.
arm device devname Start response capture.

1
write addr $2006, data $55 ! Txd port A
write addr $2006, data $D ! Txd port A
1
1
i

write addr $2016, data $55 Txd port B

write addr $2016, data $D Txd port B

write addr $201C, data $FF !

write addr $201E, data $FF ! Pulse timer interrupt.
readout device devname ! End response capture.

end program

Figure 4-67: Stimulus Program (tt!_Ivl) - continued

4-173

Serial 1/0

STIMULUS PROGRAM NAME: TTL ILVL

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With 8IG IVL LVL Mode Counter Range
Ul1-13 PROBE 10 TRANS 8
Ull-14 PRCBE 10 TRANS 1
Ul11-33 PROBE 10 TRANS 8
U11-33 I/0 MCDULE 10 TRANS 8
Ul1l-15 PROBE 10 TRANS 1
Ul1-15 I/0 MODULE 10 TRANS 1
Ul1-17 PROBE 10 TRANS 1
Ul1l-24 PROBE 10 TRANS 0
Ul11-24 I/0 MODULE 10 TRANS O
U12-12 PROBE 10 TRANS 8
U12-9 PROBE 10 TRANS 1
Ul3~6 PROBE 10 TRANS 8
Ul3-6 I/0 MODULE 10 TRANS 8
U13-8 I/0 MCDULE 10 TRANS 8

4-174

Figure 4-68: Response File (tt!_Ivl)

368 BYTES

Priority
Pin

Serial 1/0

program rs232_init

Trrpsrre e rren sttt r R R TR I I I I T LIELILIIIIILILIIOIIIILIRILILIII I IOISEIIIIIIIIILIOYLISYL

TEST PROGRAMS CALLED:
{none})

GRAPHICS PROGRAMS CALLED:
{none)

INITIALIZATION PROGRAM for SERIAL I/0 functional block.

setspace space (getspace space

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

$2004,
$2004,
$2004,
$2004,
$2004,
$2014,
$2014,
$2014,
52014,
$2014,
$2000,
$2000,
$2010,
$2010,
$2002,
$2012,
$2008,

read addr $2002
read addr $2000

end program

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

$15
$25
$35
$45
$55
$15
$25
$35
$45
$55
$13
7
$13
7
$66
$BB
$20

"i/o", size

Cmnd
Cmnd
Cmnd
Cmnd
Cmnd
Crand
Cmnd
Cmnd
Cmnd
Crind
Mode
Mode
Mode
Mode

Read Status Reg A
Read Command Reg A

Reg A:
Reg A:
Reg A:
Reg B:
Reg B:
Reg A:
Reg A:
Reg A:
Reg B:
Reg B:

"byte")

reset
reset
reset
reset
reset
reset
reset
reset
reset
reset

register 1A
register 2A
register 1B
reglster 2B
Clock select register A
Clock select register B
Interrupts for port B

Rxd
Txd
Errors
Rxd
Txd
Rxd
Txd
Errors
Rxd
Txd

Figure 4-69: Initialization Program (rs232_init)

Serial I/O

Summary of Complete Solution for
Serial I/0 4.6.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Serial I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Serial I/O)
Programs (PROGRAM):
TEST_RS232 Functional Test Section 4.6.5
RS232_DATA Stimulus Program Figure 4-63
RS232_LVL Stimulus Program Figure 4-65
TTL_LVL Stimulus Program Figure 4-67
FREQUENCY Stimulus Program Figure 4-117
LEVELS Stimulus Program Figure 4-92
RS232_INIT Initialization Program Figure 4-69
Stimulus Program Responses (RESPONSE):
RS232_DATA Figure 4-64
RS232_LVL Figure 4-66
TTL_LVL Figure 4-68
FREQUENCY Figure 4-118
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-176

Video Output

VIDEO OUTPUT FUNCTIONAL BLOCK 4.7.

Introduction to Video Output Circuits 4.7.1.

Video output circuits are part of larger video display circuits. In
general, video display circuits can be divided into two basic
classes: video display controllers and intelligent command-
oriented display systems, which are a superset of video display
controllers. In this manual, we will limit our discussion to video
display controllers.

Figure 4-70 is a block diagram of a typical, complete video
display controller, of which video output is one functional
block. On the Demo/Trainer UUT, address decoding is
partitioned as a separate functional block and is described later in
Sections 4.11. Often, much of the video control circuitry is
performed by a VDC (video display controller) chip. On the
Demo/Trainer UUT, most of the video output block is
implemented with a single LSI chip.

The video output block typically performs all or some of the
following functions:

® Converts video RAM character or dot graphics signals
(typically on a bus) to higher-speed (typically serial) pixel
outputs that drive the monitor. This is usually done with
shift registers.

® Modifies the meaning of video RAM color-data outputs
according to a color look-up table or palette RAM.

. Converts the pixel output to analog or digital signals
compatible with the monitor.

Considerations for Testing and
Troubleshooting 4.7.2.

The Video Output functional block simply processes information
presented to it by the Video Control and Video RAM functional
blocks. All three video blocks can be considered good if the

4-177

Video Output

Address
Decoding
Circuit

A

3z

From - laisplay Video Processing "
A S emory »| and Output To Monitor

Microprocessor and Memory ; ;
— ACCess Shift Register |—»

4 [

A

Video Control
and Timing

Figure 4-70: Typical Video Controller Circuit

Video Output

O final outputs of the Video Output functional block are good.
Because of this, the Video Output functional block is tested first.

While a generalized approach to testing Video Control functional
blocks is feasible, testing Video Output and Video RAM
functional blocks is strongly dependent on the design of the
UUT.
The general approach for testing video circuits is to initialize
video RAM and any other RAM sections so that some regular
pattern will occur each frame. When this is done for each mode,
there should be a way to capture stable signatures on the
outputs.
To test video output:

1. Initialize the video control circuit.

2. Initialize the video RAM with blinking disabled.

For horizontal sync and vertical sync:
3. Probe the horizontal sync and vertical sync outputs.
4. Compare all frequencies to those from a known-good
UUT.
For video outputs:

3. Connect the clock module's external CLOCK,
START, and STOP lines.

4. Compare signatures of TTL-level video outputs to
those from a known-good UUT.

5. You can check the level history of any non-TTL-level
video outputs to verify that they are toggling.

4-179

Video Output

Connecting the Start and Stop lines to the vertical sync line will
usually work. The Clock line should be connected to the high-
speed clock that drives the video output shift registers.

Video outputs are sometimes high-speed analog signals.
Fortunately, any digital-to-analog conversion is usually done at
the last step before the monitor. By measuring the digital signals
that drive digital-to-analog converters, most of the circuit can be
tested with the 9100A/9105A.

Furthermore, many of the monitors for personal computers
accept TTL-level signals. Video cards that put out such TTL-
level signals can be checked by the 9100A/9105A at these TTL-

level video outputs.

Choose your measurement device to suit the data rate of the
signals you are measuring. If the Video Output signals exceed
the maximum data rate of the I/O modules (10 MHz), the probe
should be used.

Testing should be started in the mode that tests as much of the
video display circuitry as possible. In a color graphics circuit,
this might be the highest resolution mode with the most colors.
Simple tests in other modes can then be used to cover circuitry
not tested with the more extensive test.

When selecting the Start and Stop signals for signature analysis,
connect to the slowest repetitive signal, relative to the circuitry
being tested. This will usually be the vertical sync signal.

To test blinking cursors, it may be easiest simply to probe an
internal line to make sure it is blinking rather than run a test
program. Other similar modes may also be faster to test with the
probe.

Video Output Circuit Example 4.7.3.

4-180

The Video Output functional block, shown in Figure 4-71,
consists of the 2675 attributes controller chip (U78) and
associated circuitry. The 2675 contains a programmable dot

Video Output

Q clock divider to generate a character clock, a high-speed shift
register to convert parallel pixel data into a serial stream, latches
and logic to apply visual attributes (e.g. colors) to the resulting
display, and logic to display a cursor on the monitor.

Associated circuitry includes latches U87 and U76, which clock
in display information provided by the character PROM, and Q1
and Q2, which boost the video signal before it is mixed with the
horizontal and vertical sync signals at the monitor to be
connected at J3.

The circuitry from the Video Control functional block up to the
2675 attributes controller chip (U78) clocks video data in
character format. This means that the code for a character and
the attributes for that character are clocked toward the 2675 chip.
The attributes controller converts the parallel character
information to pixel data.

The circuitry after U78 should be initialized without blinking
characters in the video screen, otherwise the pixel stream will
change when the characters blink. However, the circuitry
between the video control and U78 may contain blinking
characters, since the blinking characters are determined by an
attribute bit which is stable.

Keystroke Functional Test 4.7.4.

Before testing any part of the video display circuitry, the video
controller and video RAM must be initialized. The TL/1
programs video_init, video fill, and video fil2 are used for
initialization of the Demo/Trainer UUT video circuitry. Figure
4-79 shows the video init program, which contains a sequence
of write commands needed to initialize the Video Control
functional block. Figures 4-80 and 4-81 show the video fill
and video_fil2 programs, which write blocks of data to video
RAM.

4-181

Video Output

4-182

. Use the EXEC key with the following commands to initialize

the video circuit and to fill the video RAM with a test pattern.

EXECUTE UUT DEMO PROGRAM VIDEQ_ INIT
EXECUTE UUT DEMO PROGRAM VIDEO FIL1

. Connect the external control lines of the clock module as

follows:

Clock to 16MHZ (U25-9)
Start to VSYNC (U72-18)
Stop to VSYNC (U72-18)
Enable to BLANK (U72-17)

. Use the SYNC and PROBE keys with the following

commands to measure the node response for the video
output signals (TTV1, TTLV2, and VIDEO). The pins to be
probed and the correct responses are shown in the response
table of Figure 4-71.

SYNC PROBE TO EXT MOD ENABLE LOW CLOCK | ...
. sTarT | sTtop T

ARM PROBE FOR CAPTURE USING SYNC

SHOW PROBE CAPTURED RESPONSES <see ..
. response table>

. Use the PROBE and SOFT KEYS keys with the following

command to measure frequency of the video synchronization
signals. The results for each sync signal (HSYNC and
VSYNC) are shown in the response table of Figure 4-71.

FREQ AT PROBE

Video Output

(This page is intentionally blank.)

4-183

Video Output

Keystroke Functional Test

CONNECTION TABLE

{NONE)
CLOCK u25-9 u7s
START 72418 13
STOP ure-1s
EMARLE U727
RESPONSE TABLE

CLOCK AND RESET - B0286 BUS
: Fee | MICADPROCESSOR SUFFER

| 1EMHT HEADYT “‘—_‘—J

READY VIDED

CIACUIT RaM

i

VRAMADY .

4-184

Video Output

g AES

158

DADDD4 4
DADOOS S
DADO0E 17
DADROT 13 |
BV 1
L504 1 +Bv
BLANK 3 [4 8 X |
-
s 18 07
0803 o 18 DB
0801 17 DB
oac: 3 D4
|| o=oz 3 E 5y
DE0 =S PER!
DEOS “ RE 01 .

4 sl AS3 pAB4
oBos - Llato oot oe 458 gasa
Deo7 EXN i

| | oetia ALZ o
DH1% o
. T oiue
E
DABELY - COLOR/MONOCHROME
DaDOD1D o S ATTRIBU :EqSS?gDNTHDLLEH
11
ALSOB el
| |ceae
DBOZ
 |omin
OB11 .
oB12 B oz g3 i CURSOR NS
DB13 7 ln= a: | 12 Blank TTLVY
o 33 15 .
4 o1 a1 5 MG | Er TTLYVE
2 oo aol 2 _NC —322ncLk
FE — .
L 08 s 1BMHL |
TTLve
= TIva
ABE) REY RBE
CURSOA 330 gaso ERES
BLANK S cas l
CCLE | P l I
i Z‘Q Uﬁ9s aeutva a0z
SWE-2 . 2. aK
| +EV 46 586
| 9y
10
HE YN i \\—SS-S ! J
2_)] wea 3 ~
L]
45V 12
VSYNG 13[] ues il

Figure 4-71: Video Output Functional Test

4-185

3 Video Output

Programmed Functional Test 4.7.5.

The test video program is the programmed functional test for the
Video Output functional block. This program uses the gfi test
command and the probe to measure the output of the video
circuit.

If the video outputs fail, the program executes programmed
functional tests for the Video Control functional block and the
Video RAM functional block. If either of these functional tests
fails, GFI will take control and begin backtracing. If neither test
fails, the problem is in the Video Output functional block and the
test video program passes control to GFI to start backtracing
from the video outputs that failed.

program test_video

Tttt rr L LRLELCLLOLIOIILCOELELLILIOLTIRIEELIOEI LI LI TITERITIIIITITITTIIEILTITITLITTIIIIIIIIIIterrrnat

! FUNCTIONAL TEST of the VIDEO functional block !
] !
! This program tests the VIDEO functional block of the Demo/Trainer. !
! The video test uses the gfi test command to run stimulus programs and !
! to check the outputs of the Video circuit against the stimulus program!
! response files. The gfi test command returns a passes status if all !
! the measured results from running the stimulus programs match the !
! response files. Otherwise the gfi test command returns a fails !
! status. !

! Setup and initialization.

connect clear "yes"
podsetup ‘enable ~ready' “on"
print "\nl\nl"

! Main part of Test.

if gfi test "J3-8" fails then fault video_scan \ return
if gfi test "J3-9" fails then fault video_scan \ return

if gfi test "U78-11" fails then fault video_scan \ return
if gfi test "U78-28" fails then fault video output \ return
if gfi test "U78-29" fails then fault video output \ return
if gfi test "J3-7" fails then fault video output \ return

end program

4-186

O

Video Output

Stimulus Programs and Responses 4.7.6.

Figure 4-72 is the stimulus program planning diagram for the
Video Output functional block. The video freq stimulus
program initializes the video registers and then measures
frequency. The video_scan stimulus program initializes video
RAM with blinking characters by executing video_ fill. The
video out stimulus program initializes video RAM without any
blinking characters by executing video _fil2. Not having
blinking characters results in stable signatures in the circuitry
between U78 and the video output connector.

All the stimulus programs execute video_init before any
measurements are made on the video circuitry.

4-187

Video Output

Stimulus Program Planning

INITIALIZATION PROGRAM: VIDEO_FIL1

INITIALIZES VIDEQ RAM WITH BLINKING
CHARACTERS

MEASUREMENT AT:

INONE)

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEC REGISTERS TO STANDARD
OPERATING MODE

MEASUREMENT AT:

(MONE)

INITIALIZATION PROGRAM: VIDEO_FIL2

INITIALIZES VIDEQ RAM WITHOUT BLINKING
CHARACTERS

MEASUREMENT AT:

(NOME)

PROGRAM: VIDEO_OUT

EXECUTES VIDEO_INIT, VIDEO_FIL2, AND
MEASURES ALL CIRCUITRY WHERE DATA IS
CLOCKED THROUGH BY PIXELS

MEASUREMENT AT:

U78-28.29
uss-6.8
R72-2, R71-2
a1-1

Qz2-1

CLx .]
CLOCK AND RESET = 80285 IR 8Us]
MICAOPADCESSOR | BUFFER |

I L

- 1
| 1BMHZ READY
READY VIDED
CIACULT RAM

WEAMADY

4-188

Video Output

CappDos &

DADDOS & |
DADDOE 12

DADDO? 13

o4

LS
BLANK 3 :@ =]

oBQ

¥5V =t

+5V
REL JAEZ JRE3 (AB4 JAES
158 {158 {158 {158 {158
- - L ca1
T .otuF
1
A
Ao COLOR/MONDCHROME
ADD11 .
DADDI0 ATTRIBUTES CONTROLLER
2675
ALS08 L 1; BLINK |
A3 : |

S0R

oo

D1
D2 RELANK

D3

AHILT w0 5
ABLANK

A0OUBLE

ARVID

APGS
ARG

GPE
GP 1
TTLV 4
TTLVE=E==

HSYNC

SB6

VSYNC

sBE

4 |
=]§ u@ﬁ_lw
SBE
Elve .
| 107 usa WB_ OUTVEL
<7 o

S

SE6

+EY 12
— .J@j uea)ﬁ
i

Figure 4-72: Video Output Stimulus Program Planning

4-189

Video Output

program video freq

Trrprretrrrnrpnpren e n SRR IR R LIILILEIPIEILIII YIRS LITIIOILIIOBITILIIIILIG LI TITIITILIIITITII e

STIMULUS PROGRAM to measure frequency in video circuit.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

GRAPHICS PROGRAMS CALLED:
{none)

Local Variables Modified:

1

1

1

1

1

t

!

! TEST PROGRAMS CALLED:
1

r

1

1

1

1

! devname Measurement device
1

t
1
1
1
1
1
1
1
video_init () Initialize video !
1
1
1
1
1
1
1

! FAULT HANDLERS: !
IR RN R S R N S N R R N RN R R R R R NS R E S SRR RN R RS SRS

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_recovered

recover ()
end handle

1B R R R R R SR RN RN RN

! Main part of STIMULUS PROGRAM !
RS N R R R R R R R R R N SRR S S R N N R SRR

recover times = 0
! Let GFI determine the measurement device

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe"

end if

print *\1B[2J"

print "Stimulus Program VIDEO FREQ"

! Initialize and Setup desired measurement mode
reset device devname
execute video init ()
counter device devname, mode "freq"

! No stimulus is applied; response is frequency

arm device devname ! Start response capture
readout device devname ! End response capture

end program

- Figure 4-73: Stimulus Program (video_freq)

Video Output

STIMULUS PROGRAM NAME: VIDEQO FREQ
DESCRIPTION:

Node
Signal Src

U72-17
U72-17
U72-18
U72-18
U72-19
U72-19
U78-33
U78-33
Ugs-3

Ugg-11
U70-11
U70-11
U62-4

SIZE:

Learned
With

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
PROBE
PROBE
I/0 MODULE
I/0 MODULE

Figure 4-74: Response File (video_freq)

SIG

Response Data
Async Clk Counter
ILVL IVL Mode

FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ

[l e I SR S S PRI S
cooO0cOOoO0OCOOO OO

Counter Range

14300-14500
14300-14500
59-61

59-61
16700-16800
16700-16800
1770000-1780000
1770000~-1780000
16700-16800
59-61
1770000-1780000
1770000-1780000
14300-14500

345 BYTES

Priority
Pin

Video Output

program video out

Trrrrrrernnprr LRI LI LI LIILEILIEITITI LI LI LRI RIREI I TITILII I RIRILILIIII I IRLILILIIIGITIRRILIIIIIIIILIY

STIMULUS PROGRAM measures character scan circuitry from U78 to output.!

Stimulus programs and response files are used by GFI to backtrace

from a faliling node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

video init () Initialize video ciruit.

video fil2 () Initialize data in video RAM
with no blinking characters

1 !
1 1
1 1
i 1
1 1
1 1
! !
! TEST PROGRAMS CALLED: !
1 1
1 1
t 1
1 1
1 1
! check meas (device, start, stop, clock, enable) !
! Checks to see if the measure- !
! ment is complete using the i
! TL/1 checkstatus command. If
! the measurement times out then!
1
1
1
1
1
1
1
1
1

redisplay connect locations. !

GRAPHICS PROGRAMS CALLED:
(none)

Local Variables Modified:
done returned from check meas ()

devname Measurement device
T1rrrnprterLLLILL NI LIO LTI TILILIIbR RGP ERLILIIOLIYIRILIIRIRITLRITLITLITTITLTITTITTIOTITRIRITRTLITTITTITTITTITITTITYEITTITEITTITITITTITITILIIrny

! Main Declarations
ISR U U O O O O 0 0 N O O N O O R OO0 O O 0 0 0 0 A A A A N A A A A O A A O O O O O |

declare numeric done = 0

trrrrrrrrrrrrrr L rr LTI TR R R LIILIIIITLIOIILTIRER R R LIIILI LI LI RIS IR R R LI LI LI LRI RIEILIOLITIIILIILIOILILILIGLTY

! Main part of STIMULUS PROGRAM !
IR R RN R RN R A RN EE RN SN

! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe"

end if

print "\1B[2J"

print "Stimulus Program VIDEQ OUT"

(continued on the next page)

Figure 4-75: Stimulus Program (video_out)

4-192

Video Output

! Initialize and Prompt user to connect external lines

execute video_init ()
execute video fil2()
connect device devname, start "U88-13", stop "U88-13", clock "U25-9", common "gnd"

! Setup desired measurement modes.

reset device devname

sync device devname, mode "ext”

enable device devname, mode "always"

edge device devname, start *-", stop "+", clock "-"
old cal = getoffset device devname

setoffset device devname, offset (1000000 + 40)

! Present stimulus to UUT.

loop until done = 1
arm device devname
done = check_meas (devname, "U88-13", "U88-13", "U25-9", "*")
readout device devname
end loop

setoffset device devname, offset old cal
end program

Figure 4-75: Stimulus Program (video_out) - continued

4-193

Video Output

STIMULUS PROGRAM NAME: VIDEO OUT
DESCRIPTICON: SIZE: 200 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1IVL Mode Counter Range Pin
U78-28 PRCBE B013 10 TRANS 4431
U78-29 PROBE BE4A7 10 TRANS 6359
Ugg-6 PROBE 10 TRANS 4431
ugg~8 PROBE 10 TRANS 6359
R72-2 PROBE 1X0 TRANS
Q2-1 PROBE 1X TRANS
Q1-1 PROBE 1X0 TRANS

: R71-2 PROBE 1X0 TRANS

Figure 4-76: Response File (video_out)

Video Output

program video_ scan

! STIMULUS PROGRAM to measure character scan circuitry from U72 to U78. !
1 1
! stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. i
1 1
! TEST PROGRAMS CALLED: !
! video_init () Initialize video ciruit.

1 1
! video fill () Initialize data in video RAM

1 1
! check meas (device, start, stop, clock, enable) !
! Checks to see if the measure- !
! ment is complete using the

! TL/1 checkstatus command. If !
! the measurement times out then!
! redisplay connect locations.

1 1
! GRAPHICS PROGRAMS CALLED:

! (none) !
! 1
! Local Variables Modified: !
I done returned from check_meas ()

1 devname Measurement device
llllllllll!lllllll!ll!lv trerrpreprnrn LRI L RLLILIILIIITIRLILILILIILILIISLILILIY

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout recovered
recover ()

end handle

! Main part of STIMULUS PROGRAM 1
TrrrrIILLILTIILTILIOLILILIOLIILIII LI TIS LTI I T LIRIRILIIII I LIS T ETITIIIIOILIIGRSELITIIILISLEIILITLITIIIITIL ettt

recover_times = 0

(continued on the next page)

Figure 4-77: Stimulus Program (video_scan)

4-195

Video Output

! Let GFI determine measurement device.

if (gfi control} = "yes" then
devname = gfi device
measure ref = gfi ref

else
devname = "/modl"
measure_ref = "U72"
end if

print "Stimulus Program VIDEO SCAN"

Initialize and Prompt user to connect external lines

execute video init ()

execute video_fill ()

connect device devname, start "U88-13", stop "U88-13", enable "U78-12",
clock "U78-33", common "gnd"

Setup desired mesurement modes.

reset device devname

sync device devname, mode “ext"

enable device devname, mode "low"

edge device devname, start “-", stop "+", clock "-"

Present stimulus to the UUT.

The blink signal node (U72-23 to U78-11) has a signature of 0000 50% of the time
and the signature in BLINK SIG the rest of the time. If U72 or U78-11 is being
tested, make sure both a zero and the signature in BLINK SIG are measured

on the node. The signature that gfi will evaluate is the signature in the
variable BLINK SIG.

done = 0 \ done2 =0
cnt = 0 \ blink =0
loop until done = 1 and done2 = 1 or cnt > 12
arm device devname
done = check_meas (devname, "U88-13%, “Ugg-13“, "U78-33", "U78-12")
if done = 1 then if checkstatus (devname} <> $F then done2 =1
readout device devname
if measure ref = "U78-11" then
if (sig device devname, pin 11)=0 then blink =1
if (sig device devname, pin 11)=BLINK SIG and blink=1 then done2=1
else 1f measure ref = "U72" then
if (sig device "U72", pin 23)=0 then blink = 1
if (sig device "U72", pin 23)=BLINK SIG and blink = 1 then done2 = 1
else
done2 =1 ! Don't loop if not U72 or U78-11
end if
cnt =cnt + 1
end loop

end program

Figure 4-77: Stimulus Program (video_scan) - continued

4-196

Video Output

STIMULUS PROGRAM NAME:

DESCRIPTION:

Node
Signal Src

U74-9

U74-10
U74-11
U74-13
U74-14
U74-15
U74-16
U74-17
ugs-9

U85-10
U85-11
U85-13
Ug5-14
U85-15
Ugs5-16
Ugs5-17
U84-12
U84-9

Ug4-7

Ug4-4

U83-12
U83-9

U83-7

U83-4

U73-12
U73-9

U73-7

U72-34
U72-33
U72-32
U72-31
U72-30
U72-29
U72-28
U72-27
U72-26
U72-25
U72-24

VIDEO_SCAN

Learned
With

I/0
I/0
1/0
1/0
I/0
I/0
I/0
/0
I/0
1/0
1/0
1/0
I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
/0
I/0
I/0
1/0
I/0
/0
I/0
I/0
1/0
I/0
I/0
1/0
1/0
I/0
I/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MCDULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PROBE

I/0

MODULE

PROBE

I/0

MODULE

PROBE

I/0
I/0

MODULE
MODULE

Figure 4-78: Response File (video _scan)

SIG

4155
3F33
A65A
9024
DE6D
D6FA
7AC3
0477
A814

(continued on the next page)

Response Data

Async Clk Counter

IVL LVL Mode

PRPRPRPEPERPERPREPERRRP SR PR e s b s
COO0O0ONDOOO0O00OOO00O0O0O0DO00OO0O0C0O0O00OOOOOOCOOOOO0OO OO

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS

Counter Range

1,710 BYTES

Priority

Pin

4-197

Video Output

U75-3 1/0 MODULE 6FBl 10 TRANS
u75-7 I/0 MODULE 9B47 10 TRANS
U75-6 I/0 MODULE 58R8 10 TRANS
U75-10 I/0 MODULE 762E 10 TRANS
U75-11 I/0 MODULE BSD1 10 TRANS
U75-15 I/0 MODULE 2C30 10 TRANS
U75-14 I/0 MODULE EFCF 10 TRANS
U77-11 I/0 MODULE 7B80 10 TRANS
U77-12 1/0 MODULE 8FE6 10 TRANS
U77-13 I/0 MODULE ADD1l 10 TRANS
U77-15 I/0 MODULE EBR37 10 TRANS
U77-16 I/0 MODULE FFE7 10 TRANS
u77-17 I/0 MODULE B708 10 TRANS
U77-18 I/0 MODULE 55C3 10 TRANS
U77-19 I/0 MODULE BOOD 10 TRANS
Ug7-2 I/0 MODULE 7B80 160 TRANS
U87-5 I/0 MODULE 8FE6 10 TRANS
U87-6 1/0 MODULE ADD1 10 TRANS
Ug7-9 I/0 MODULE EB37 10 TRANS
ug7-12 I/0 MODULE FFE7 10 TRANS
u87-15 I/0 MODULE B708 10 TRANS
U87-16 I/0 MODULE 55C3 10 TRANS
Ug7-19% I/0 MODULE BOOD 10 TRANS
U76-2 PROBE 1ADB 10 TRANS
U76-2 I/0 MODULE 1ADB 10 TRANS
U76-5 PROBE 444F 10 TRANS
U76-5 I/0 MODULE 444F 10 TRANS
U76-6 PROBE D65A 10 TRANS
U76-6 I/0 MODULE D65A 10 TRANS
U76-9 PROBE 4366 10 TRANS
U76-3% I/0 MODULE 4366 10 TRANS
U76-12 PROBE 49EA 10 TRANS
U76-12 1/0 MODULE 49EA 10 TRANS
U76-15 PROBE 4DDC 10 TRANS
U76-15 I/0 MODULE 4DDC 10 TRANS
U76-16 PROBE 5B18 10 TRANS
u76-16 1/0 MODULE 5B18 10 TRANS
U76-19 I/0 MODULE 3EF2 10 TRANS
U63-11 PROBE 0CSB 10 TRANS
U63-11 I/0 MODULE OCS5B 10 TRANS
U63-6 PROBE 66D3 10 TRANS
U63-6 I/0 MODULE 66D3 10 TRANS
Uge-6 PROBE 610D 10 TRANS
U86~6 I/0 MODULE 610D 10 TRANS
Ug6-9 PROBE 5925 10 TRANS
UB6-9 I/0 MODULE 5925 10 TRANS
U86-12 PROBE SFAA 10 TRANS
Ug6-12 I/0 MODULE 5FAA 10 TRANS
U86~15 PROBE D909 10 TRANS
U86-15 I/0 MODULE D909 10 TRANS
UB6-16 PROBE C26B 160 TRANS
Ug6-16 I/0 MODULE C26B 10 TRANS
Ug6-19 PROBE A814 10 TRANS
Ug6-19 I/0 MODULE A814 10 TRANS
Figure 4-78: Response File (video_scan) - continued

Video Output

program video init

INITIALIZATION PROGRAM for the 2674 Advanced Video Display Controller.!
The program executes two Master Reset commands followed by the init- !
ialization of 15 contiguous Initialization Registers. Next 6 regis-
ers are initialized which determine the screen memory mapping and the
cursor location.

1

1

1

1

1

1

! This program must be executed before any video testing is performed,
! and must be re-executed whenever UUT power has been interrupted.
1

1

1

1

1

t

TEST PROGRAMS CALLED:
{none})

! GRAPHICS PROGRAMS CALLED:
(none) 1

setspace space (getspace space "i/o", size "byte")

write ADDR 2, DATA O Master Reset Command
write ADDR 2, DATA O Master Reset Command
write ADDR 0, DATA $48 Write Initialization Register

write ADDR 0, DATA $20
write ADDR 0, DATA $22
write ADDR 0, DATA $86
write ADDR O, DATA $17
write ADDR 0, DATA $4F
write ADDR 0, DATA 9

0
Write Initialization Register 1
Write Initialization Register 2
Write Initialization Register 3
Write Initialization Register 4
Write Initialization Register 5
Write Initialization Register 6

7

8

1

1

1

1

1

1

1

1

!
write ADDR 0, DATA $28 ! Write Initialization Register
write ADDR O, DATA O ! Write Initialization Register
write ADDR 0O, DATA $10 ! Write Initialization Register 9
write ADDR O, DATA O ! Write Initialization Register 10
write ADDR 0, DATA O ! Write Initialization Register 11
write ADDR 0, DATA 0 ! Write Initialization Register 12
write ADDR O, DATA 0 ! Write Initialization Register 13
write ADDR O, DATA O ! Write Initialization Register 14
write ADDR 4, DATA 1 ! Screen Start 1 Lower Register
write ADDR 6, DATA O ! Screen Start 1 Upper Register
write ADDR 8, DATA O ! Cursor Address Lower Register
write ADDR $A, DATA O ! Cursor Address Upper Register
write ADDR $C, DATA © ! Screen Start 2 Lower Register
write ADDR $E, DATA © ! Screen Start 2 Upper Register
write ADDR 2, DATA 529 ! Enable Screen On Command

end program

Figure 4-79: Initialization Program (video_init)

4-199

Video Output

program video fill

INITTALIZATION PROGRAM fills video RAM with every attribute & char
TEST PROGRAMS CALLED:

{none}

(none}

Text Files Accessed:

vid_fil111 !
IR S NS NN NN

1]
1 1
1 1
1 !
! !
! GRAPHICS PROGRAMS CALLED: !
1 1
1 1
1 1
1 1
1

setspace space (getspace space "memory", size "word")
writeblock file "vid filll", format "motorola™

end program

Figure 4-80: Initialization Program (video _fil1)

4-200

Video Output

program video fil2

trrrrreretpptprerptrrrrrrrrLEELLLLLIIRLLLLLIIELILILIRLELLIOLIOIOL IR RELIIEILIIIIIILILLETY

GRAPHICS PROGRAMS CALLED:
(none)

Text Files Accessed:
vid fill2 !

setspace space (getspace space "memory"”, size *"word")
writeblock file "vid fill2", format "motorola"

end program

Figure 4-81: Initialization Program (video_fil2)

4-201

Video Output

Summary of Complete Solution for
Video Output 4.7.7.

4-202

The entire set of programs and files needed to test and GFI
troubleshoot the Video Output functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Video Output)
Programs (PROGRAM):
TEST _VIDEO Functional Test Section 4.7.5
VIDEO_FREQ Stimulus Program Figure 4-73
VIDEO_OUT Stimulus Program Figure 4-75
VIDEO_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figure 4-92
VIDEO_INIT Initialization Program Figure 4-79
VIDEO_FIL1 Initialization Program Figure 4-80
VIDEO_FIL2 Initialization Program Figure 4-81
Stimulus Program Responses (RESPONSE):
VIDEO_FREQ Figure 4-74
VIDEO_OQUT Figure 4-76
VIDEO_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
VID_FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

S

O

Video Control

VIDEO CONTROL FUNCTIONAL BLOCK 4.8.

Introduction to Video Control Circuits 4.8.1.

After initialization by the microprocessor, the video control
block typically generates four major timing functions:

® Character timing for serializing character or dot graphics
information to the Video Output functional block.

® Address generation and timing control for accessing the
video RAM.

® Cursor timing and control to the Video Output block.
. Vertical and horizontal sync signals.
The frequency of these signals may vary from about 60 Hz for

vertical sync to well over 10 MHz for pixel information. Figure
4-82 shows the timing of some of these signals.

Timing Signals

The vertical scan rate is the measure of how often the entire
video picture is drawn on the screen (usually 50 or 60 Hz). The
screen is scanned horizontally many times during each vertical
scan. If the video display is character-oriented, there might be
10 horizontal scans for each row of characters.

When set up properly, the timing outputs and video RAM
address outputs will repeat regularly at the vertical scan rate. All
the timing signals (such as the character clock, horizontal scan,
blanking, vertical sync, blink rate, and cursor signal) are
normally derived from the dot clock.

The cursor timing output is a strobe which occurs when the
cursor address is sent out.

4-203

Video Control

Dot 16
Clock MHz
Video

Data

Character
Clock I1VII7-17
oo — | Mhz

Dot-Related Timing

Character

(~CCLK) Z
Video
RAM

Addresses

&
HSYNG 95 Cycles of Character Clock*l_

el 1t
a1

Character-Related Timing

0

le———— 540 Cycles of HSYNG ——»!

VSYNC

Video Frame Timing

Figure 4-82: Video Display Controller Timing

4-204

G

Video Control

Considerations for Testing and
Troubleshooting 4.8.2.

Video control circuitry can usually be tested in four steps.

1. Initialize the circuitry (set up the video display
controller registers if the implementation uses such a
chip).

2. Test for proper signature on the scan address lines
going to the video RAM to ensure that it cycles
through the proper addresses when displaying a
frame.

3. Check the vertical and horizontal sync frequency.

If the timing logic is used in several modes, the three
steps described above can be repeated for each mode.

4. Test the cursor strobe generator by clocking from the
character clock, starting at the beginning of the frame
and stopping at the end of the frame. You may need
to test for proper signatures at several cursor
positions. For this test approach to work, the cursor
cannot be in a blinking mode.

The video RAM access logic, which allows the microprocessor
and the video display controller to share video RAM, must
arbitrate access to video RAM.

Since the microprocessor and the video display controller are not
always synchronous, it may be impossible to find a single clock
that gives stable signatures for all of the arbitration logic. One
approach to testing the arbitration logic is to count pulses on the
outputs of the video control logic while doing a series of writes
to video RAM.

The Demo/Trainer UUT contains an example of a memory
arbitration circuit which is hard to troubleshoot. It is a state
machine with seven inputs and three outputs. In testing this type
of circuit, you don't need to worry about how it works. All that

4-205

Video Control

is required is to exercise the inputs in a way that causes a stable
response on each output. When this type of circuit does not
function, it may be necessary to break some of the feedback
loops to isolate the problem to one component. This can be
done by using an I/O module to overdrive nodes in the feedback
loops.

The character clock will probably be the best clock signal for
most of the nodes, including scan address lines, video RAM,
and circuitry up to the shift register which converts character
information to pixel information. The response measurement
should start at the end of the vertical retrace and should stop at
the beginning of the vertical retrace. This means that the Start
and Stop external control lines from the 9100A/9105A Clock
Module or an I/O Module should connect to the vertical sync
signal.

Video Control Circuit Example 4.8.3.

4-206

The Video Control Circuit of the Demo/Trainer UUT, Figure 4-
83, uses a Signetics™ 2674 advanced video display controller
(AVDCQ), U72, for video control. The 2674 is a programmable
device designed for use with CRT terminals and display systems
that employ raster-scan techniques. It is programmed with
CRT-terminal setup information, providing cursor, blanking,
and clock signals to the 2675 Attributes Controller chip (U78) in
the Video Output functional block.

The 2674 outputs to the Video RAM functional block on the
scan address lines DADDQ0O-11 in synchronization with the
horizontal and vertical sync signals.

The remaining circuitry in this block is a state machine. It is
normally inactive, but upon writing to video RAM it produces a
variable-length wait state to synchronize the microprocessor bus
cycle to the video character clock.

Figure 4-83 shows a timing diagram for the video control circuit
of the Demo/Trainer UUT.

Video Control

o

State machine for Video RAM access (U70, U71, U79, U80, U81, U82)

|
]
~CCLK 1.77 MHz J Input
| < 564 ns »
U79-8 I I Input
|
|
~SELECT A I Output
| | |
< > 125 ns
| | |
§ SELECT D { ! } Output
] (|
~VRAMRDY I } } /_— Output
| | |
Processor Request Switch MUX Enable Return Ready
to Write Video RAM to Processor Data to End Cycle
Address
‘) Figure 4-83: Video Control Functional Block Timing

Video Control

4-208

Keystroke Functional Test 48.4.

Part A:

1.

Clip a 40-pin clip module on I/O module 1 to test U72.

2. Use the the EXEC, I/O MOD, and SOFT KEYS keys with

the following commands and check the measured frequency
with the correct frequency ranges shown in the response
table of Figure 4-84.

EXECUTE UUT DEMO PROGRAM VIDEO_ INIT
FREQ ON I/O MOD 1 PIN <see response table>

Part B:

1. Connect the external control lines of the I/O module 1 as

follows:

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

Use the EXEC, SYNC, and I/O MOD keys with the
following commands, and check the measurements with the
response table in Figure 4-85.

EXECUTE UUT DEMO PROGRAM VIDEQ_INIT
SYNC I/O MOD 1 TO EXT ENABLE LOW ...
. CLOCK {START { sTop T
ARM I/O MOD 1 FOR CAPTURE USING SYNC
SHOW I/0 MOD 1 PIN <see response table> ...
... CAPTURED RESPONSES

Video Control

; —~
NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!O MOD PIN" column of the
response table in the Figure 4-85.

Part C:

Use the SYNC, PROBE, and WRITE keys with the probe to
test the video ready signals. Compare the results with the
response table in Figure 4-86.

SYNC PROBE TO POD DATA
e ARM PROBE FOR CAPTURE USING SYNC
‘" a WRITE BLOCK INTO MEMORY FROM UUT DEMO ...
_ . FILE VID FILL1 USING MOTOROLA
(ADDR OPTION: MEMORY WORD)
SHOW PROBE CAPTURED RESPONSES

4-209

Video Control

Keystroke Functional Test (Part A)

(NDNE)

CONNECTION TABLE

ure

4-210

CLOCK AMD RESET

RESET

32MHZ

CLK

RESPONSE TABLE

HOZHEG BUS
MICROPROCESSOA BUFFERA
ROV
READY ADDAESS | o VIOSCT
CIRCUIT DECODE VAAM

WEAMRDY

Video Control

ADVANCED VIDED DISPLAY
CONTROLLER {avDC)

VIDED

COLK ouT

2674
TEY 36 el CTAL:
CTAL2
MC 35 3nTH CTRLA
(1403 35,5 DapOD33 2L NG
_[h02 3B ,5 DaDD 12,22 NG
TA01 37 |4 pADDA 1L 23 DAOD11
naDnio, 24 DADO10 5
ocaDDa 25 DA0O0S | SWS-8
VIDSLT 2 |&r oappa |26 DADOOE R
TWRITE 3 _|yg oapp7 |27 DADDO7
e Oappe |28 DADOOS
o oanoe |28 DADDOS
fano4 |29 ADD
| 1007 s banna |31 AD00
| [ooE 14) ppe paDoE |32 DADDO2
005 13| e bangos |33 DaDDO:
| 1094 12154 Dapoo 34 DaDDoC
003 11| pq
002 105 CcuRsoAL_ 7 CUASCR
{ 1001 3 g, BLask 27 BLANK
000 8 fng EECK 26 ECIK

v (18 HSYNG
vayne 2B VEYNG
2

ToLk A2 U770
CCLK = % N

1

7 SELECTOD

558
10 ac

pli GC |

ol 15 Go

14 GO

e
| |) TEHE 10,
IAD0 & 5 us

ESET

LS10

|50
flsle

8 Juss

LECTA

Figure 4-84: Video Control Functional Test (Part A)

4-211

Video Control

Keystroke Functional Test (Part B)

CONNECTION TABLE

| MEASUREMENT CONTROL
CLOCK u78-33 ure
START UB8-13
STOR UEB-13
EMABLE urs-12
RESPONSE TABLE

*DAD11 has a signature of DB6S ane half of the time and 0000 the other half of the time.

CLOCK AND RESET Ll BO28EE BUS
MICROPADCESSOR BUFFER
RESET MM
TEADY
READY ADDRESS WIOSLT
CIRCULT DECOOE | g VAEH
TVFUHRDY

4-212

Video Control

+5V 36

NE 35 TRTA

IA03
IAa0z

Ia01

VIDSLT 2 |gF
TWAITE

ADVANCED VIDEOQ DISPLAY
CONTROLLER [aVDC)
EET74
CTAL1

ACLL

DADD11

DADO 1D

CTALZ |———
CTARL3

DADDOT

DADDDS

EERITY

DADDOS

DADD13]
Dapo1alSE ME
DADD14
Danoag
DADDI
Dapos
DADDT

38] 4o
370 a1

TREAL

DADDE

e

0ADDS
DADD4
04003
oagoz
DADD1

DADOO

CURSOA

BLANK 25

CCLEK .=

DADDO 2

SwWS-8

VIDED
ouT

HSYNC

VEYNC

30

8 c_15 11 10 2
G0 12| uv1
5) u7s 8 13

32MHZ

SHE-3
R B T |

ETE I
4 aal_2ax

VIDED
RAM

usz
a2 BELECTA

1

2

a

it !

] u?9\~ L
B

i

T LS00
THHE 10 12
TADD 5 | US1

L5214
i1

ESET

Figure 4-85: Video Control Functional Test (Part B)

4-213

Video Control

Keystroke Functional Test (Part C)

CONNECTION TABLE

RESPONSE TABLE

CLOCK AND RESET LL Bus
BUFFER
RESET 32MHZ
1
AEADY ADDRESS |- LOSLY
CIACUIT DECOOE VAAM
|
|

4-214

Video Control

ADVANCED VIDEOQ DISPLAY

CONTROLLER [avDC)
2674
*EY 36 [ap e cTALL | ANC gigg:é
NC 38 | CIOE §:§ DADDOT
M INTE cTAL3 | BNC BT
0A0005
EE) 21 NG
A3 DADD1 3|
ECH I DapDio, B8 NG DAODOA
e
oappiol 2L DADC 1D
oapna |25 DaDOOS SWS-8
TIOELT 2 | panDs |25 3
TRRITE 3 |4n oapo7 |22
TREAD 4 ospos (28
= 7o gapos |28
; ., oappa |20
pe? 15 1oy oapp3 |21
| Zoce 2los oaopa |22
nos N nappy |33
04 2lpe oacoo |24
(o003 1]y
002 10]pz cuAsoR|_7 CURSOR
DO1 ot BLank |17 BLANK
iooe oo TECE |48 COLK
Hsvne |18 HEYNC
wevne [18 R
ure
CELK
1
[]
| {
] .
- .
2
L a
LYSEL 4
Th 5
GC 5
GO 41
—__ _Lsoo
TEHE 10 12
[Ia00 8] UG

VIDED

CELE ouT
VIDED

RaM

ESET

R

Figure 4-86: Video Control Functional Test (Part C)

Video Control

Programmed Functional Test 48.5.

The zst_vidctl program is the programmed functional test for the
Video Control functional block. This program checks the video
controller IC (U72) and the video RAM ready generator outputs
U81-8 and U82-3 using the gfi test command. If the gfi rest
command fails, the abort_test program is executed and GFI
troubleshootlng begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst vidctl

FUNCTIONAL TEST of the VIDEO CONTROL functional block.

1
t
This program tests the VIDEO CONTROL functional block of the !
Demo/Trainer, The gfi test command and I/0 module are used to !
perform the test. !
1
1
i
1
1

I
1
1
!
l
I
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation
f display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

1 Setup
print *\nl\nlTESTING VIDEO CONTROL Circuit"™
! Main part of test
podsetup 'enable ~ready' "on"
if gfi test "“U72-34" fails then abort_test ("U72-34")
if gfi test "U81-8" fails then abort test (“U81-8")

if gfi test "U82-3" fails then abort test ("U82-3")

print *VIDEO CONTROL TEST PASSES™
end program

Stimulus Programs and Responses 48.6.

4-216

Figure 4-87 is the stimulus program planning diagram for the
Video Control functional block. The video data stimulus
program outputs data onto the data bus. The video freq
stimulus program initializes the video registers and then
measures frequency. The video scan stimulus program
initializes video RAM by executing video fill, which fills video

Video Control

RAM with characters including blinking characters. The
reset_low stimulus program prompts the test operator to push
the Demo/Trainer UUT RESET pushbutton and measures the
level of the reset signal. The levels stimulus program stimulates
activity appropriate for measuring static levels on a number of
nodes in the Video RAM Ready (VRAMRDY) generation
circuit. The video rdy stimulus program stimulates the Video
RAM Ready (VRAMRDY) generation circuit by writes made to
the write-only video RAM.

All the stimulus programs execute video init before any
measurements are made on the video circuitry.

4-217

Video Control

PROGRAM: VIDEO_SCAN

EXECUTES VIDEO_INIT, VIDEO_FIL1, AND
MEASURES ALL CIRCUITRY WHERE DATA IS
CLOCKED THROUGH BY CHARACTERS

MEASUREMENT AT:

U72-34,33,32,31,30,29,28,27,26,25,24,23,7

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEQ REGISTERS TO STANDARD
OPERATING MODE

(NOME)

MEASUREMENT AT:

4-218

CLOCK aND RESET

RESET 32MHZ
¥

CLK

80286
MICROPROCESSOA

READY

READY
CIRCUIT

AMALY

BUS
BUFFER
AODAESS | gu 1OSCT
DECODE J—o-—""—

Video Control

ADVANCED VIDEQ DISPLAY

CONTAOLLEA (AvOD) VIDED
2674 EELK ouT
. 0oy -
5Y 38 acLL TR 4 NG L
o G ATUhR
HE S5 TWTR ctAL3 | B NC DADDOE
1a03 38| ,. Dapn13| 23 NG QADDOS |
[1a0z _361.2 gaoois e
Ia01 37 | ay DaDO14 !
DaDD10L SR Amlb] &
DADDS oD _0ADDOD =

WE-B

bapDa 2B 0AQDOR VIDED
papo? |27 DaOOO7]
oaDDS |28 DADOOE | AaM
DaADDS 29 DADOOS
oaDDa |20 DADDO4
oanDa 31 DaD003
oappz |22 DADCOZ

oapDy {33 040001 |
fapno |34 DADOOO

(1]

-

7 cuasos
CURSOR|
BLang [HED BLAMK]
TOLK
HSYNC
VSYNG
z

CCLK
GC
[+]s]
_0: 13 LS00
s 1
- QA
GB

L500

| TBHE 10
Ia00 9 @_I.EJ_

LS10 GC|

o — "
VRRRFEY 0GB
9 SELECTA

Figure 4-87: Video Control Stimulus Program Planning

o

4-219

Video Control

program video_data

STIMULUS PROGRAM to extract data from U72 registers.

1
1
! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with 1
or without the ready circuit working properly. Because of this, all !

! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
t for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

1

1
1
1
!
! TEST PROGRAMS CALLED:

i recover 0 The 80286 microprocessor has a!
! bus controller that is totaly !
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program !
! resynchronizes the pod and the!
! bus controller. !
1

1

1

1

1

1

1

1

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
recover_times Reset to Zero
devname Measurement device
Trrrrrr bR LIOROLRIEISLIO LI LI LRI RIRIRILIILIII I I LTI IRRLILIILI LI I ILRITRLILIIIITLIIITIIITITLIILITITEILLILILIIIIty

! FAULT HANDLERS: !
SRR R SR N R N R R R R N R RN N SN R RS SRS

handle pod_timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

(continued on the next page)

Figure 4-88: Stimulus Program (video_data)

4-220

Video Control

! Main part of STIMULUS PROGRAM !

recover_times = 0
! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device
else
devname = "/modl"
end if
print “Stimulus Program VIDEO DATA"

! Set addressing mode and initialize.

option = getspace type "i/o", size "byte"
setspace (option)

write ADDR 8, DATA $FF ! Cursor Address Lower
write ADDR $A, DATA O ! Cursor Address Upper
write ADDR $C, DATA $AA ! Screen Start 2 Lower
write ADDR $E, DATA $35 ! Screen Start 2 Upper

! Setup measurement device.

| reset device devname
: sync device devname, mode "pod"
' sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname ! Start response capture
read addr 8 ! Lower Cursor Addr Reg
read addr $A ! Upper Cursor Addr Reg
read addr $C ! Lower Screen Start 2
read addr S$E ! Upper Screen Start 2

readout device devname ! End response capture

end program

Figure 4-88: Stimulus Program (video_data) - continued

4-221

Video Control

STIMULUS PROGRAM NAME: VIDEO DATA

DESCRIPTION: SIZE: 318 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U72-8 PROBE 0009 1 O TRANS
U72-8 1/0 MODULE 0009 1 0 TRANS
U72-9 PROBE 000A 1 0 TRANS
U72-9 I/0 MODULE O0O00A 1 0 TRANS
U72-10 PRCBE 0009 1 O TRANS
U72-10 I/0 MODULE 0009 1 O TRANS
U72-11 PROBE 000A 1 0 TRANS
U72-11 I/0 MODULE O000A 1 0 TRANS
U72-12 PROBE 0009 1 0 TRANS
U72-12 I/0 MODULE 0009 1 O TRANS
U72-13 PROBE COOB 1 0 TRANS
U72-13 I/0 MODULE 000B 1 O TRANS
U72-14 PROBE 0008 1 0 TRANS
U72~14 I/0 MODULE 0008 1 0 TRANS
U72-15 PROBE 000A 1 0 TRANS
U72-15 I/0 MODULE O000A 1 0 TRANS

Figure 4-89: Response File (video_data)

4-222

Video Control

program video_rdy

! STIMULUS PROGRAM activates video ready circuitry.

1 1
! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. t
1 . 1
! TEST PROGRAMS CALLED: 1
i (none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
! Local Variables Modified: !
! devname Measurement device !
lll‘IllllllllllllllllIIIIIIIlll|llilllllVIIIIIIIIIIIIIIIIIIIIIIY!III]I‘IT

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout_recovered
recover (}

end handle

! Main part of STIMULUS PROGRAM 1

recover times = 0
! Let GFI determine measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/probe”

end if

print "Stimulus Program VIDEO RDY"

! Set addressing mode and Set up measurement device.
reset device devname
setspace space (getspace space “memory"”, size "word")
sync device devname, mode "pod"

sync device "/pod", mode "data"

! Present stimulus to UUT

arm device devname ! Start response capture.
toggledata addr. $20000, data 0, mask $FFFF ! Create a burst of writes.
readout device devname ! End response capture.

end program

Figure 4-90: Stimulus Program (video_rdy)

4-223

Video Control

STIMULUS PROGRAM NAME: VIDEO RDY

DESCRIPTION: SIZE: 1,411 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL I1VL Mode Counter Range Pin
Ug2-2 PROBE 0000 10 TRANS
us2-2 1/0 MODULE 0000 10 TRANS
Ug2-3 PROBE 3951 10 TRANS
Ug2-3 I/0 MODULE 3951 10 TRANS
Ug2-7 PROBE 0000 10 TRANS
Ug2-7 I/0 MODULE 0000 10 TRANS
Ug2-6 PROBE 3951 10 TRANS
U82-10 PROBE 3951 10 TRANS
Ug2-10 I/0 MODULE 3951 10 TRANS
Ug2-11 PROBE 0000 10 TRANS
Ug2-11 I/0 MODULE 0000 10 TRANS
Ug2-15 PROBE 0000 10 TRANS
U82-15 I/0 MODULE 0000 10 TRANS
Us2-14 PROBE 3951 10 TRANS
U82-14 I/0 MODULE 3951 10 TRANS
Usl-6 PROBE 3951 10 TRANS
Ugl-6 I/0 MODULE 3951 10 TRANS
Usl-8 PROBE 0000 10 TRANS
Ugl-8 I/0 MODULE 0000 10 TRANS
Ugl-12 PROBE 3951 10 TRANS
U80-6 PROBE 0000 10 TRANS
Ug0-8 PROBE 3951 10 TRANS
Ug0-12 PROBE 3951 10 TRANS
U79-8 I/0 MODULE 3951 10 1 TRANS
U71-3 PROBE 0000 10 TRANS
U71-3 I/0 MODULE 0000 10 TRANS
U71-6 PROBE 0000 10 TRANS
U71-6 I/0 MODULE 0000 10 TRANS
U71-8 PROBE 0000 10 TRANS
U71-8 I/0 MODULE 0000 10 TRANS
U71-11 I/0 MODULE 3951 10 TRANS
U70-3 I/0 MODULE 3951 10 TRANS
U70-6 I/0 MODULE 3951 10 TRANS
U70-8 I/0 MODULE 3951 10 TRANS
U70-11 PROBE 10 TRANS
U70-11 I/0 MODULE 10 TRANS
U62-2 PROBE 3951 10 TRANS
U62-2 I/0 MODULE 3951 10 TRANS
U62-6 I/0 MODULE 0000 10 TRANS
U62-10 I/0 MODULE 39531 1 TRANS
U62-12 I/0 MODULE 3951 1 TRANS
U61-6 I/0 MODULE 3951 10 TRANS
U61-3 I/0 MODULE 3951 10 TRANS
U61-8 I/0 MODULE 3951 1 TRANS

(continued on the next page)

Figure 4-91: Response File (video_rdy)

4-224

Video Control

U84-4
Ug4-~7
Ug4-9
U84-12
U83-4
U83-7
Ug3-9
Ug3-12
U73-7
U73-9
U73-12
U69-18
U69-16
U69-14
U69-12
U69-9
U69-7
U69-5
U69-3
U68-18
U68-16
U68-14
Ue8-12
U68-9
U68-7
U68~5
U68-3

I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
1/0
I/0
I/0
I/0
1/0
I/0
1/0
1/0
I/0
I/0
I/0
I/0
1/0
I/0
I/0
I/0
I/0
I/0
I1/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PREREREBRERRPBRBSE MBS e b e e e e
COO0OO0O00O00O0OOOOO0O0OCOCOOOOOO OO

TRANS 8300-9500
TRANS 14000-17500
TRANS 30000-36000
TRANS 61000-71000
TRANS 950~1300
TRANS 1400-1800
TRANS 2300-2700
TRANS 4100-4700
TRANS 475-800
TRANS 500-900
TRANS 700-1000
TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

Figure 4-91: Response File (video_rdy) - continued

4-225

Video Control

program levels

! STIMULUS PROGRAM to measure level history. !
1 1
| Stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
3 ! This is a general purpose routine that is used to characterize the
| ! level history both sync and async of a node that may not lend itself
! to signatures or frequency. 1
1 1
! TEST PROGRAMS CALLED: !
! {none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
1 (none} !
1 1
! Local Variables Modified: !
! devname Measurement device !
IIIll1|l1!lllllIIIIII!‘II!IIIllllltllllllllllllIll!lllIllltlllllllllll'll

1 FAULT HANDLERS: !

handle ped timeout_no clk
end handle

! Let GFI user select which I/0 module to use.
if (gfi control) = "yes" then
devname = gfi device
else
devname = "/modl"
end if
print “Stimulus Program LEVELS"
! Set desired measurement modes.
reset device devname

! No stimulus is applied; response is async levels.

arm device devname ! Start response capture.
readout device devname ! End response capture

end levels

Figure 4-92: Stimulus Program (levels)

4-226

Video Control

STIMULUS PROGRAM NAME: LEVELS

DESCRIPTIOCN: SIZE: 1,435 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL LVL Mode Counter Range Pin
Ug2-2 PROBE 0 TRANS
Ug2-2 I/0 MODULE 0 TRANS
U82-3 PROBE 1 TRANS
Ug2-3 I/0 MODULE 1 TRANS
uUg2-7 PROBE 0 TRANS
Ug2-7 I/0 MODULE 0 TRANS
Ug82-6 PROBE 1 TRANS
Ug82-10 PROBE 0 TRANS
U82-10 I/0 MODULE 0 TRANS
Ug2-11 PROBE 1 TRANS
Ug2-11 I/0 MODULE 1 TRANS
Ug82-15 PROBE 0 TRANS
Ug82-15 I/0 MODULE 0 TRANS
Ug82-14 PROBE 1 TRANS
U82-14 I/0 MODULE 1 TRANS
Ugl-6 PROBE 1 TRANS
Ugl-6 I/0 MODULE 1 TRANS
Ugl-8 PROBE 1 TRANS
U81-8 I/0 MODULE 1 TRANS
Ugl-12 PROBE 0 TRANS
U80-6 PROBE 1 TRANS
Ug80-8 PROBE 1 TRANS
U80-12 PROBE 1 TRANS
U79-8 I/0 MODULE 1 TRANS
U71-3 PROBE 0 TRANS
U71-3 I/0 MODULE 0 TRANS
U71-6 PROBE 0 TRANS
U71-6 I/0 MODULE 0 TRANS
U71-8 PROBE 0 TRANS
U71-8 I/0 MODULE 0 TRANS
U71-11 I/0 MODULE 1 TRANS
U70-3 I/0 MODULE 1 TRANS
U70-6 I/0 MODULE 1 TRANS
U70-8 I/0 MODULE 1 TRANS
U70-11 PROBE 10 TRANS
U70-11 I/0 MODULE 10 TRANS
U62~2 PROBE 0 TRANS
U62-2 I/0 MODULE 0 TRANS
U61-8 I/0 MODULE 1 TRANS
U62-6 I/0 MODULE 0 TRANS
U61-3 I1/0 MODULE 1 TRANS
U61-6 I1/0 MODULE 1 TRANS
Ug4-4 I/0 MODULE 10 TRANS
Ug4-7 I/0 MODULE 10 TRANS
(continued on the next page)
Figure 4-93: Response File (levels)
4-227

Video Control

Us4-9 I/0 MODULE 10 TRANS
Ug4-12 I/0 MODULE 10 TRANS
U83-4 I/0 MODULE 10 TRANS
Us3-7 I/0 MODULE 10 TRANS
U83-9 I/0 MODULE 10 TRANS
U83-12 1/0 MODULE 10 TRANS
U73-7 I/0 MODULE 10 TRANS
U73-9 I/0 MODULE 10 TRANS
U73-12 I/0 MODULE 10 TRANS
U69-18 I/0 MODULE 10 TRANS
U69-16 I/0 MODULE 10 TRANS
U69-14 I1/0 MODULE 10 TRANS
U69-12 I/0 MODULE 10 TRANS
U69-9 I/0 MODULE 10 TRANS
Ue9-7 I/0 MODULE 10 TRANS
U69-5 I/0 MODULE 10 TRANS
U69-3 1/0 MODULE 10 TRANS
U68-18 I/0 MODULE 10 TRANS
Ues-16 1/0 MODULE 10 TRANS
Ue8-14 I/0 MODULE 10 TRANS
U68-12 I/0 MODULE 10 TRANS
U68-9 I/0 MODULE 10 TRANS
U68-7 I/0 MODULE 10 TRANS
U68-5 I/0 MODULE 10 TRANS
U68-3 T/0 MODULE 10 TRANS
J4-6 PROBE 0 TRANS
J4-6 I/0 MODULE o] TRANS
J4-10 PROBE 1 TRANS
J4-10 I/0 MODULE 1 TRANS
R34-1 PROBE 1 TRANS
DS1-2 PROBE 1 TRANS
R26~1 PROBE 0 TRANS
R26-1 I/0 MODULE 0 TRANS
R32-1 PROBE 1 TRANS
R4-1 PROBE 0 TRANS
R61-1 PROBE X TRANS
R77-1 PROBE 1 TRANS
R78~2 PROBE 1 TRANS
R79-2 PROBE 1 TRANS
R80-1 PROBE 1 TRANS
U26-3 I/0 MODULE X TRANS
Ul3-4 PROBE 1 TRANS
Ul3-4 I/0 MODULE 1 TRANS
Ul1l3-12 PROBE 0 TRANS
Ul13-12 I/0 MODULE 0 TRANS
Ccl3-1 PROBE 1X0 TRANS
Cc4-1 PROBE 0 TRANS
Ul4-65 PROBE 1 TRANS
Ul4-65 1/0 MODULE 1 TRANS

Figure 4-93: Response File (levels) - continued

1 4-228

Video Control

O Summary of Complete Solution for
Video Control 48.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Video Control functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Video Control)
Programs (PROGRAM):
TST_VCTRL Functional Test Section 4.8.5
RESET_LOW Stimulus Program Figure 4-115
VIDEO_DATA Stimulus Program Figure 4-88
VIDEO_FREQ Stimulus Program Figure 4-73
VIDEO_RDY Stimulus Program Figure 4-90
VIDEO_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figure 4-92
VIDEO_INIT Initialization Program Figure 4-79
Stimulus Program Responses (RESPONSE):
RESET_LOW . Figure 4-116
VIDEO_DATA Figure 4-89
VIDEO_FREQ Figure 4-74
VIDEO_RDY Figure 4-91
VIDEO_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-229

Video Control

(This page is intentionally blank.)

4-230

Video RAM

VIDEO RAM FUNCTIONAL BLOCK 4.9.

Introduction to Video RAM 4.9.1.

Video RAM blocks come in several forms. Here are some of the
common configurations:

Character-oriented video RAM, with secondary character-
generation ROM or RAM.

Pixel-oriented video RAM.
Combinations of the above.

Access to video RAM can be provided in several ways,
including:

The video display controller may directly access
microprocessor memory by stealing memory cycles.

Video RAM may be separate but still mapped into
microprocessor memory space. In this case, access to this
memory may be write-only or read/write.

Access to video RAM may be through I/O-mapped
registers.

If character-generation RAM is used, access to character
RAM may be different than access to video RAM.

Considerations for Testing and
Troubleshooting 4.9.2.

Testing of video display circuits is complicated by the fact that
there may be as many as three separate hierarchical memory
spaces, each of which may be sectioned for use only in a
particular mode of operation:

4-231

Video RAM

® VideoRAM
¢ Character ROM or RAM
¢ Color palette RAM

Video RAM

If video RAM has read/write access and is mapped into the
microprocessor memory space, it can be tested with the
9100A/9105A's built-in RAM test (Section 4.4 discusses this
built-in test). If video RAM does not have read access, the
video RAM output must be tested with the I/O module or the
probe. The 9100A/9105A external Start and Stop control lines
should be connected (probably to vertical sync) so that one
frame is captured. The 9100A/9105A external Clock control
lines should be connected to the appropriate clock signal so that
valid RAM output will be captured for each read cycle.

With the above connections, the following procedure will
usually test video RAM:

1. Initialize the video circuitry, if not already initialized.

2. Initialize the video RAM with blinking enabled. The
TL/1 writeblock and writefill commands can be used
to do this.

3. Set the video control mode so that it accesses as
much video RAM as possible.

4. Measure signatures at the video RAM output and
compare them to good signatures.

5. Steps 2, 3, and 4 can be repeated, varying the test
pattern loaded into video RAM. For example, with
16-bit-wide memory try test patterns like FFFF,
0000, 7777, and AAAA, or ramping data over the
entire video RAM.

Video RAM

O Character ROM or RAM

If the video RAM is character oriented, with secondary character
ROM or RAM, a pattern can be written into the video RAM that
cycles through the character-memory addresses. In the case of
character ROM, signatures collected at the ROM outputs serve to
test the ROM. In the case of character RAM, a pattern must be
loaded into the RAM before testing.

Video RAM Circuit Example 4.9.3.

Figure 4-94 shows the Video RAM functional block for the
Demo/Trainer UUT. Components U74 and U85 provide 2K
bytes of static vidleo RAM. When addressed over the main
address bus (IA01-11), video RAM is used to store ASCII
character codes supplied by the microprocessor over the main
data bus (DB00-15). The system is character-mapped: a
specific video RAM address maps into a physical location on the
monitor screen.

The video control logic sequentially samples these addresses
over lines DADDO00-11 to generate display characters using the
ASCII codes at these addresses and the corresponding display-
character information in the character PROM (see U77 in the
Video Output functional block).

The multiplexers U73, U83, and U84 select between the video
control address lines (DADO00-11) and the buffered
microprocessor lines (IAQ1-11). The selection control for this
multiplexing comes from the Video Control functional block.

Video RAM

Keystroke Functional Test 4.9.4.

1. Connect the external control lines of I/O module 1 as
follows: '

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

the video scan signal. Use the EXEC, SYNC, and I/O MOD
keys to enter the following commands. Then, compare the

% 2. Use a 24-pin clip module on side A of I/O module 1 to test
measurements with the response tables in Figure 4-94.

3 EXECUTE UUT DEMO PROGRAM VIDEO INIT

: EXECUTE UUT DEMO PROGRAM VIDEQ FIL1

SYNC I/0 MOD 1 TO EXT ENABLE LOW ...
. crLock ! start | stop T

ARM I/0 MOD 1 FOR CAPTURE USING SYNC

SHOW I/0 MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN” column of the
response table in Figure 4-94.

Video RAM

(This page is intentionally blank.)

Video RAM

Keystroke Functional Test

CONNECTION TABLE

MEASUREMENT CONTROL
CLOCK u7e-33 uva
START UB8-13 uas
STOP Uaa-13
ENABLE uva-12
RESPONSE TABLE

CLOCK AND RESET OLK 80286 BUS
MICROPAOCESSORA BUFFER

HEAnY
READY e VIDEQ -
CIRCUIT CONTROL -

4-236

Video RAM

F157
_a..._j..a
Laty 0 5 laa
Iatl 11 38
Iang 14 .0 1wl 4__'*1_C
oyl 7 AB10
NC 3 g ay[9 aB0s
oaDO1Q =] a 4% 12 ABOE
DADODS 10 35)
DADO0E 13 5
L _lsEL
15 3
[u7s | |
[i
T
|
4 ABOT
7 ABDE
Danon? 3 aBOS
£ADOOE |1z ABO4
DADDOS |
DADDDS
1 =EL
15 I
V155
[ICE]
A
Al
AD4 2 A
A03 5 lag A
A02 T /A A N A
A01 14 |4 w4 asoa| ||, Al
2y 7 aB0Z &
_DADDO3 s8 =y|_8 AB01 A
_DADDOZ =8 4y 12 ABOQ Al
Dao001 | 10 [5g
DADDIO 20 g
h L504 [2iWE
] 5 185
" 4 —i uss
usz —
SELECTA
L5244
0315 2 [ya. syg| 18 D815
1014 4 | 0814)
D13 B | 1a3 1v3 0B13 |
012 B | 4ps 1va oBiz
D11 1 a1 2yl 2 0B11
010 13| ap5 oyaz| 7 OB10
LS04 | [|foos 2a3 2y3[S 0809
5 Ls00 | [Tooe 17 3 oeos
R TEFE 43 LN | 2a4 2¥a
= | ust b2 4l 15
usz [S
1 uss
LS04
1200 1gf™. 1
usz
| Ls2ag
| 1at 1ya[18 0807
1az 1yz|i6 0BOS
143 1yg|i4 0B0S
N = DBOA
SELECTA 1a4 1va
2a1 2v: DBO3
SELECTD Snz By2 oED2
5 oeo:
283 2v3 1801]
2aa 2yal S 0B00
6
5
uEa

VIDED

Figure 4-94: Video RAM Functional Test

ouT

4-237

Video RAM

Programmed Functional Test 4.9.5.

The tst_vidram program is the programmed functional test for
the Video RAM functional block. This program checks the two
RAM ICs U74 and U85 using the gfi test command. If the gfi
test command fails, the abort_test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block
for a discussion of the abort_test program).

program tst_vidram

BRSNS R

! FUNCTIONAL TEST of the VIDEO RAM functional block.

! This program tests the VIDEO RAM functional block of the Demo/Trainer.!
! The gfi test command and I/O module are used to perform the test.

1
1
!
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble~ !
1
1

shoot ing). !
trrrrrrrrrrtrr R EELLEOLIEYI LI R RITELILIYITEILIT LTI EITLRITEITTITEITTIEITTITTITTITERITITLTITTITITIIITITITLTIGLTITTITILTIIIOIIIIIITIIL ittt

! Setup
print "\nl\nlTESTING VIDEO RAM Circuit"
! Main part of Test

podsetup 'enable ~ready' *"on"

if gfi test "U74-9" fails then abort test ("U74-9")
if gfi test "U85-9" fails then abort test ("U85-9")

print “VIDEO RAM TEST PASSES"
end program

Stimulus Programs and Responses 4.9.6.

4-238

Figure 4-95 is the stimulus program planning diagram for the
Video RAM functional block. The video scan stimulus program
initializes video RAM by executing video fill, which fills video
RAM with characters including blinking characters. The levels
stimulus program provides the appropriate stimuli to measure the
asynchronous level of various outputs. The video rdy stimulus

Video RAM

program stimulates the Video RAM Ready (VRAMRDY)
generation circuit by writes made to the write-only video RAM.

All these stimulus programs (except levels) execute video_init
before any measurements are made on the video circuitry.

4-239

Video RAM

Stimulus Program Planning

PROGRAM: VIDEO_RDY

EXERCISES THE VIDEO RAM DATA BUFFERS AND
VIDEO RAM ADDRESS MULTIPLEXERS

MEASUREMENT AT:

ug4-129.7.4 U61-36

ug3-129.7.4 U68-3,5,7,9,12,14,16,18
u73-129,7 U§9-3,5,7,9,12,14,16,18
U62-6,12,10

INITIALIZATION PROGRAM: VIDEO_INIT

INITIALIZES VIDEO REGISTERS TO STANDARD
QOPERATING MODE

MEASUREMENT AT:

(NONE)}

INITIALIZATION PROGRAM: VIDEO_FIL2

INITIALIZES VIDEC RAM WITHOUT BLINKING

CHARACTERS
MEASUREMENT AT;
INITIALIZATION PROGRAM: VIDEO_FIL1
(NONE)
INITIALIZES VIDEQ RAM WITH BLINKING
CHARACTERS
MEASUREMENT AT:
(NONE)
CLOCK AND RESET CLE g 80288 8Us
MICROPROCESSOR BUFFER
i
READY
READY VRAMADY YIDED
CIRCUIT CONTROL

4-240

Video RAM

1air
1a10
109]
| AB10
NC | ABOZ
0ADDI0 I Al
DADDOS Al
DADDOB Al
Al
A
Al
2
| Al
Al
F157
IACH
IAQT
IADE
IAUS
4
0ADDC?
CADOCE
CADDCS
DADDCA
Al
Al
A
Al
AD4 “ABD
EGE Al
202 A
EGE A
1 A
_pappod A
DapDo0Z | A
DADDOY h
0ADDOO
ci5 2
D14 4
5] E
o
] 1
o L3
Inog 15
I00E 17
LS04
1400 11f™~ [40 fH0e =
1 - U1 B
us2
L5244
1007 2 faa1 avy
005 4 14,5 vz
: 143 173
SELECTA rru M
2a1 271t
SELECTD 13 | naz mve
15 243 2v3
_% 24 2Ya

Figure 4-95: Video RAM Stimulus Program Planning

4-241

Video RAM

Summary of Complete Solution for
Video RAM 497.

The entire set of programs and files needed to test and GFI
troubleshoot the Video RAM functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Video RAM)
Programs (PROGRAM):
TST_VCTRL Functional Test Section 4.9.5
LEVELS Stimulus Program Figure 4-92
VIDEO_RDY Stimulus Program Figure 4-90
VIDEO_SCAN Stimulus Program Figure 4-77
VIDEO_INIT Initialization Program Figure 4-79
VIDEO_FIL1 Initialization Program Figure 4-80
VIDEQO_FIL2 Initialization Program Figure 4-81
Stimulus Program Responses (RESPONSE):
LEVELS Figure 4-93
VIDEO_RDY Figure 4-91
VIDEO_SCAN Figure 4-78
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
VID_FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-242

Bus Buffer

BUS BUFFER FUNCTIONAL BLOCK 4.10.

Buses and Bus Buffers 4.10.1.

In addition to the bus at the pins of a microprocessor, many
microprocessor-based designs include additional internal buses
connecting the microprocessor, memory, I/O devices, and other
circuitry. These internal buses are often separated by buffers or
latches which complicate testing and troubleshooting.

For purposes of testing and troubleshooting, a bus is a group of
signals that operate in an identical manner, such as an address or
data bus. The bus is a connection between a sending output and
one or more receiving inputs. For internal buses, the sending
and receiving components may be buffers. Buffers separate
internal buses from the microprocessor bus. A fault such as two
buffered address lines tied together cannot be directly detected
from the microprocessor bus. Thus, some faults on the buffered
bus may go undetected by the built-in BUS TEST.

The key to testing a bus is that while there may be multiple
outputs to the bus, only one should be active at any time. Each
bus has an associated set of control and status lines which must
also be tested.

Considerations for Testing and
Troubleshooting 4.10.2.

There are several methods of testing bus buffers. For buses, it
is usually desirable to test all combinations of bus signal levels
to verify that:

® Alllines are drivable.
® No two lines are shorted together.
® No lines are open between the master and the receivers.

Bus Buffer

This is particularly desirable for data and address buses, whose
lines are often physically adjacent. These lines may be subject to
manufacturing defects and failure modes, such as:

¢ Over-etching of traces causing open lines.

® Under-etching of traces causing shorted lines.

® Solder bridges causing shorted lines.

¢ Faulty or damaged parts causing lines to be stuck or open.

¢ Faulty or damaged parts that have incorrect logical
behavior.

Bus and Buffer Testing Capabilities

4-244

A ramp function is useful for testing buses and their associated
buffers. The ramp function is a binary progression (i.e. a
sequence of ascending numbers) covering all combinations of
signal values. The ramp counts through all the values, starting
at the lowest and ending at the highest. For large groups of
signals, ramping over the full range can take considerable time.
A means of ramping through a limited range by selecting a group
of bits via a mask is therefore provided. For example, a 32-bit
address bus may be covered by performing four ramping
operations for each set of 8 bits (each group of which is
probably associated with a particular buffer). This requires only
4x28 or 1024 operations vs. 232 or 4.3 billion operations!

To troubleshoot a bus effectively, ramping operations must
cover all normal transitions for logically adjacent lines. In the
example above, suppose ramping operations covered address
lines AQ through A7, A8 through A15, etc. If A7 and A8 are
tied, the fault may not be discovered. It is therefore advisable to
overlap ramping operations in order to provide the additional
fault coverage. A portion of a TL/1 stimulus program might
look like this:

Bus Buffer

rampaddr addr $F0000000, mask S$S1FF
rampaddr addr S$F0000000, mask $1FF00
rampaddr addr $F0000000, mask $1FF0000
rampaddr addr $F0000000, mask $SFF000000

There would be 3 x 29 + 28 or 1792 iterations vs. 1024 in the
preceding example. Overlapping ramp functions usually takes
little additional test time.

Several built-in ramp and toggle stimulus functions are available:
In TL/1, the commands are rampaddr, rampdata, toggleaddr,

toggledata, and togglecontrol (see Section 3 of the TL/1

Reference Manual). From the operator's keyboard, the STIM
key provides these functions (see Section 5 of the Technical
User’s Manual).

As described earlier in Section 2.2, the 9100A/9105A can make
five types of measurements to determine whether a node is good
or bad. The list below describes how these five measurement
types relate to bus buffers. The combination of CRC signatures
and asynchronous level history is recommended for most bus
node measurements, except when data buses are being
measured. Data buses are bidirectional and can be set to high-
impedance levels between valid data times. In this case, CRC
signatures with synchronous level history are the recommended
measurement combination.

® CRC signatures are useful when associated with stimulus
functions, since a unique signature results from a relatively
large number of signal transitions. For a given stimulus
program, two nodes that are tied will almost always have
the same signature, different from the known-good
signature.

® Asynchronous level history is useful when trying to
determine whether a bus node is stuck. In this mode, the
probe or I/O module will report all of a node's three states
during the measurement period: logic 1, logic 0, or invalid
X (high-impedence). Asynchronous level history is very
useful for detecting glitches (short pulses) and is usually
used together with CRC signatures. It should not,
however, be used on data buses, which are bidirectional

Bus Buffer

and can be set to high impedance; since three-state
conditions are not predictable on such lines, they may
cause the measurement to fail. To measure data buses, use
synchronous level history with CRC signatures.

® Synchronous (clocked) level history is used to measure
signal levels at clock edges. This is useful for separation
of signals present at the specified clock edges from signals
present at other times. Clocked level history reports logic
states in the same way as asynchronous level history.
Measure data buses with this method, using the stable
clock to avoid the three-state condition.

® Transition count is used in place of CRC signatures when
there is no stable clock available.

® Frequency can be used to measure periodic bus cycles,
such as refresh, or to verify the frequency of system
clocks.

Address Buffers

When troubleshooting address buffers, the physical address map
of the UUT can be used to partition address buffer tests. For
example, a set of address lines may be part of the I/O memory
and associated with a particular buffer. Thus, a rampaddr
command over the specific I/O memory range may be sufficient
to verify proper operation of the buffer.

Other examples of address-bus partitions are:

® Mapped address lines are the microprocessor address lines
that are translated or mapped into another set of lines by a
fast RAM or VLSI component.

d System bus address lines are the address lines (usually
different from the microprocessor address lines) in the
system bus. These are usually buffered independently
from internal address lines.

® [Internal (local) address lines are usually buffered
separately for local memory or other components.

4-246

Bus Buffer

Address lines may be latched as well as buffered. In latched
applications, the latch acts as a buffer and should therefore be
included in the Bus Buffer functional block.

Data Buffers

Many UUTs with 16- and 32-bit microprocessors and standard
buses have separate buffers for each group of eight bits with
three-state and direction-control lines that can be controlled
independently. There may also be buffers that allow swapping
or repositioning of bytes within a word. The rampdata
command, combined with CRC signatures, can be used to
diagnose data-bus-related errors in a similar way as rampaddr.

The rampdata command is a stimulus with the microprocessor as
the node source. To apply stimulus in the opposite direction,
read data from a component on the bus (such as RAM, ROM or
DMA). To do this, write a stimulus program to read data from
the component, and record signatures in the same way as for
rampdata. A ROM is a convenient component since, once
programmed, it contains a pseudo-random pattern which, over a
given address range, will generate meaningful signatures for the
individual data lines. There is usually a ROM associated with
each byte of the data bus. The read or rampaddr commands will
provide the addresses for generating the data to be read from the
ROM.

Control Buffers

Control lines may sometimes be generated by an LSI component
associated with the microprocessor. The LSI component is
included here in the bus buffer functional block because it
performs a function similar to the bus buffer. The testing and
troubleshooting of these components proceeds as though they
were simple buffers.

A faulty control buffer can cause the address-bus and data-bus
tests to fail. Control signals are tested by performing reads and

4-247

Bus Buffer

writes in all possible address spaces and all possible data
widths. Some control signals can be tested by the togglecontrol
command. The control buffers should be checked as the control
lines are stimulated.

Several types of control lines present problems. Here are some
general guidelines:

Bus exchange signals are used to relinquish control of the
microprocessor bus to another master. Large systems may
have a bus arbitration circuit for granting the bus to a
requesting component. These circuits should probably be
treated separately from the bus buffer block.
Asynchronous access to the bus during tests should be
restricted and access should be limited to the specific
master acting as the stimulus source. The state of the bus-
request line can be determined with the measurement
techniques described above.

Direction control signals control the direction of data flow
through the buffers and are usually connected directly to
inputs on the buffer ICs. These signals may be derived
from microprocessor status lines, LSI components, or
buffered versions of the microprocessor signal. There
may also be separate read and write signals for different
physical memory or 1/O address spaces. The logic state
for each of these signals should be verified for the
appropriate bus cycle.

Wait-state control signals such as READY on the 80286
microprocessor and ~DTACK on the 68000
microprocessor extend the bus cycle to accommodate
slower components. Stuck wait-state control lines will
cause bus-related functions to fail. If the pod is the
stimulus source, a stuck high (negated) condition on
Ready will cause a pod timeout. When the pod timeout
occurs, a message like "enabled line ~READY PIN 63
causes timeout" (when using an 80286 pad) will result.
The line can be disabled and testing can proceed. For
example, when a ROM requiring one wait state is the
stimulus source and the Ready or ~NDTACK signal is stuck
low (asserted), the bus cycles may be completed but bad

Bus Buffer

data may be produced. As with other control lines,
asynchronous level history is useful in detecting stuck
control lines.

® Reset is a system-wide control signal which may be
included in the bus buffer functional block. A reset signal
stuck in the asserted state will probably affect many tests.
Often, the only way to verify operation of a Reset signal
without cycling the power on the UUT is to externally
assert the signal using a switch, or overdriving device such
as the probe. The various nodes which distribute the reset
signal via buffers may be verified using the asynchronous
level history measurement.

Miscellaneous Lines

System clocks are sometimes associated with the control lines
for a particular bus. These clocks are often used to synchronize
external events with a bus cycle, they are often an integral part of
control-signal generation, and they can cause control-signal
faults if they are faulty.

Clocks asynchronous with the microprocessor clock are
sometimes used to run state machines associated with bus- and
buffer-control circuitry. Nodes that distribute these clocks via
buffers can be measured with the probe or I/O module
programmed to measure frequency. There is no stimulus
associated with these frequency measurements, even though a
stimulus program is used to set the mode on the measurement
device. The same is true for the program used to measure
asynchronous levels. These programs are referred to as
response-only stimulus programs. See the levels and frequency
programs in Section 4.8.6 and 4.12.6.

Pull-up or pull-down resistors which establish static logic levels
on buses when there are no active outputs should also be tested.
Levels can be verified with asynchronous level history
measurements.

4-249

Bus Buffer

VLSI Components

Some VLSI components integrate a large amount of peripheral
microprocessor circuitry associated with personal computer
designs, including the bus buffers. Operation of these
components can be quite complex. To simplify stimulus
program design, the buffer portion of these components, along
with the associated control signals, can be grouped in a separate
functional block from the other functions of the component.
Testing can then be done in a manner similar to that for discrete
buffers.

Connectors

Connectors are a part of many bus buffering functional blocks.
Whether these are test connectors, card-edge connectors or
sockets, they are components that can cause stuck, tied, or open
bus lines. Connectors should therefore be included in tests.

Bus Buffer Example 4.10.3.

4-250

The bus buffer in the Demo/Trainer UUT, Figure 4-96, uses an
82288 bus controller (U15) to decode status lines ~S0, ~S1,
M/~IO from the microprocessor and to generate command
signals for bus-cycle control. An "I" is appended to some
mnemonics, signifying internal (buffered) signals. For
example, data-bus lines D00-D15 become internal lines ID0O0-
15.

The address bus (A00-23) is buffered with latches U2, U16,
and U22. The rising edge of each ALE transition latches a new
address.

For the data bus (D00-15), the 82288 outputs control signals
DEN (data enable) and DT/~R (data transmit/receive). These
two signals control the state of data-bus transceivers U23 and
U3. For write cycles, both DEN and DT/~R are high. For read
cycles, DEN is high and DT/~R is low.

O

Bus Buffer

Keystroke Functional Test 4.10.4.
Part A:

Use a 20-pin clip module on side A of I/O module 1 to test
data and control outputs from the microprocessor. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for each of the following parts: U3, U23, U22, U15,
and U45. The correct measurement for each pin is shown in
the response table in Figure 4-96.

SYNC I/0 MOD 1 TO POD DATA
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP DATA 0 MASKED BY FF, ADDR 0
(ADDR OPTION: I/O BYTE)
RAMP DATA 0 MASKED BY FF00, ADDR 0
. (ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User’s
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN" column of the
response table in Figure 4-96.

Part B:

Use a 20-pin clip module on side A of 1/O module 1 to test
data input to the microprocessor from the ROMs. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for U3 and then for U23. The correct measurement
for each pin is shown in the response table in Figure 4-97.

4-251

Bus Buffer

SYNC I/0 MOD 1 TO POD DATA
ARM I/0O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR E0000 MASKED BY 1FE
(ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table>
. CAPTURED RESPONSES

Part C:

1. Use a 20-pin clip module on side A of I/O module 1 to test
addresses and control outputs from the microprocessor.

2. Use the SETUP MENU key with the following commands
to disable Ready so all addresses can be generated:

SETUP POD ENABLE ~READY OFF
SETUP POD REPORT FORCING SIGNALS OFF

3. Use the SYNC, I/O MOD, and STIM keys with the
commands below for each of the following parts: U16, U2,
U22, U15, and U45. The correct measurement for each pin
is shown in response table #1 in Figure 4-98.

SYNC I/O MOD 1 TO POD ADDR
ARM I/0O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR 0 MASKED BY FFCO00
(ADDR OPTION: MEMORY WORD)
RAMP ADDR 0 MASKED BY 7FF
(ADDR OPTION: I/0O BYTE)
SHOW I/O MOD 1 PIN <see response table>
CAPTURED RESPONSES

4. Use the SYNC, I/O MOD, and STIM keys with the
commands below for part U15. The correct measurement
for each pin is shown in response table #2 in Figure 4-98.

SYNC I/O0 MOD 1 TO POD DATA

(Note that this is pod DATA sync)
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR 0 MASKED BY FFC00

(ADDR OPTION: MEMORY WORD)
RAMP ADDR 0 MASKED BY 7FF

4-252

Bus Buffer

(ADDR OPTION: I/O BYTE)
SHOW I/O MOD 1 PIN 8 CAPTURED RESPONSES
SHOW I/O MOD 1 PIN 12 CAPTURED RESPONSES

5. After completing this functional test, use the SETUP MENU
key with the commands below to enable Ready and to
restore reporting of active forcing signals.

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

Part D:

Use a 20-pin clip module on side A of I/O module 1 to test
control outputs during interrupt acknowledge by using the
pod program named FRC_INT. Use the SETUP MENU,
SYNC, and I/O MOD keys with the commands below for
U135 and then for U45. The correct measurement for each
pin is shown in the response table in Figure 4-99.

SETUP POD ENABLE ~READY ON

SETUP POD REPORT FORCING SIGNALS ON

SETUP POD INTA ACK ON

SYNC I/0 MOD 1 TO POD INTA

ARM I/0 MOD 1 FOR CAPTURE USING SYNC

POD: FRC_INT

.. (ADDR OPTION: MEMORY WORD)

SHOW I/O MOD 1 PIN <see response table>
. CAPTURED RESPONSES

4-253

Bus Buffer

Keystroke Functional Test (Part A)

CONNECTION TABLE

TEST ACCESS SOCKET U3 uis
uza uds
uzz

RESPONSE TABLE

4-254

Bus Buffer

oK ol CLOCK AND AESET

sLato
AaM
OYMNAMIC
AAM -
TIMING
ADDRESS -
DECODE
| —
2
5
(-
: e ROM L
i
T e 3 L
3 By gyl i Ia08 1408
ils

PARALLEL
| 1/0

|+mv
SERIAL
/0

Figure 4-96: Bus Buffer Functional Test (Part A)

4-255

Bus Buffer

Keystroke Functional Test (Part B)

CONNECTION TABLE

TEST ACCESS SCCKET U3
u23

RESPONSE TABLE

4-256

Bus Buffer

READY
CIRCUIT

l CLOCK AND RESET

o MATEH)

SHE-5

LY 31, 6 e

TA08

R
"SR 4-1
¥

16

120%

ALATCH

AaM |

DYNAMIC

Ram =
TIMING

INTERRUPT
CIRCUIT

HARALLEL
1/0

oo7?
coe
[=]:1]

Oba

003

[EF

oD

Figure 4-97: Bus Buffer Functional Test (Part B)

AOM —

4-257

Bus Buffer

Keystroke Functional Test (Part C)

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE #1

RESPONSE TABLE #2

4-258

Bus Buffer

READY
CIRCUIT

L CLOCK AND RESET

ALATE

— AD0AESS -
| OECOOE

INTERRUPT
CIRCUTT

- SERIAL
/0
VIDED .
Ram
1005 -
- I; VIDED
\Swa—a CONTROL
o iE]
v

Figure 4-98: Bus Buffer Functional Test (Part C)

Bus Buffer

Keystroke Functional Test (Part D)

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

4-260

Bus Buffer

READY
CIRCULT

CLe CLOCK AND RESET

hed
| A2085
J ot/ AL ALSGS
15 cens7En cEn = .
" | . T | ALATCH
READ
WHITE
TREED
TRALTE ~
THTA
—r Ram
coo/TnTa. DYNAMIC
BRE b —
a13
418 -
A17 I
—
ADDAESS I
DECOOE
|t AOM -
at0 I
AT I
A58 fAOE
————
i |
vt .| INTERRUPT L
CIRCUIT {
16]
- 1208
EEN [EE LT —]
; PAR!}{LLEL |
] G718 Tatn 10
1
ue
leg ey
I!
B | SERIAL
2 52 /0
- A 83
B4
85
&6
ar 11 1008
FrEEES B S— VIoso
HAM
1007
1008
3 5 I00%
1% 1004 J; VIDEQ
I by -
5ie a2 - WS- CONTROL
tE Toot |15 B
13 1000 <&

- 8
187 |

Figure 4-99: Bus Buffer Functional Test (Part D)

4-261

Bus Buffer

Programmed Functional Test 4.10.5.

4-262

The tst_buffer program is the programmed functional test for the
Bus Buffer functional block. The gfi test command is used to
run all stimulus programs defined for the parts tested and to
compare the results against known-good responses stored in the
response files. If all results are good, the gfi test passes;
otherwise the gfi test fails.

The tst_buffer program performs a gfi test on address buffer
U16. If the gfi test fails, a program called abort_test is executed
using a variable containing the part and pin number that was
tested by the gfi test command. A listing for the abort test
program is included in Appendix C.

The abort_test program uses the gfi accuse command to see if an
accusation exists. If there is no accusation, a gfi hint containing
the part number and pin number is generated and the program is
terminated (the gfi hint gives GFI a place to start
troubleshooting). If an accusation does exist, the abort test
program displays the accusation and the program is terminated.

The gfi test (and execution of abort test if the gfi test fails) is
repeated for the other two address buffers U2 and U22 and then
for the data bus buffers U3 and U23.

program tst_buffer

! FUNCTIONAL TEST of the BUS BUFFER functional block.

! This program tests the BUS BUFFER functional block of the
! Demo/Trainer. The gfi test command and I/0 module are used to clip
! over the buffers and perform the test.

1
1
1
!
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) If gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

Bus Buffer

G

print "\nlTESTING BUS BUFFER Circuit"™
! Test ADDRESS BUS
if gfi test "Ulé-1" fails then abort test ("Ul6-1")
if gfi test "U2-1" fails then abort test ("U2-1")
if gfi test "U22-1" fails then abort_test ("U22-1")
{ Test DATA BUS

if gfi test "U3-1" fails then abort test ("U3-1")
if gfi test "U23-1" fails then abort_test ("U23-1")

print “BUS BUFFER TEST PASSES"
end program

Stimulus Programs and Responses 4.10.6.

Figure 4-100 is the stimulus program planning diagram for the
Bus Buffer functional block.

The stimulus programs addr _out, ctrl_outl, ctrl_out2, ctrl_out3,
~ and data_out exercise outputs going outward from the
U microprocessor. The roml data stimulus program stimulates
the outputs of the data buffers that are connected to the

MiCroprocessor.

4-263

Bus Buffer

Stimulus Program Planning

PROGRAM: CTRL_.OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS
SYNCHROMIZATION

MEASUREMENT AT:

uz22-56
us7-8
U15-16
u45-8

4-264

Bus Buffer

READT
CIRCUIT

e e CLOCH AND RESET

-

5 ALSI0

ALATCH

| e —
DYNAMIC |
—r= RaM [
TIMING
. ADORESS |-
DECODE |
]
— AOM [—
L o InTERALRT
CIACUTT
PAHALLEL
N]
+5v
.| SERTAL
/0
VIDED
= Ram =
T
13
5 1005 1
4 Pk VIDED |
2 Swa-z " CONTROL |
1 13]
o

Figure 4-100: Bus Buffer Stimulus Program Planning

4-265

Bus Buffer

program ctrl out2

trrrrrrrrrrrrr s r et r I RL I ILILIILIITIRI LI LILILILILILIIIRITILILILITILIIGLBITTITLIIIIIIIIIILIISLEISLIY

STIMULUS PROGRAM for bus controller, Ul5 & uP ctrl lines.

Stimulus programs and response files are used by GFI to backtrace !
from a falling node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to
resynchronize the bus controller and the pod. !
1

recover {) The 80286 microprocessor has a!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{(none}

1
1
1
1
Local Variables Modified: !
devname Measurement device !
1
1
1
1
1
1

io_byte I/0 BYTE address space
mem_word MEMORY WORD address space

Global Variables Modified:

1
1
H
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! i
! TEST PROGRAMS CALLED: !
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
1
1
1
! recover times Reset to Zero
1

! Main Declarations !
L0000 0 A O A A A A 0 O O 0 O O O O

declare global numeric recover_times

(continued on the next page)

Figure 4-101: Stimulus Program (ctr_out2)

4-266

Bus Buffer

N
Q TP r I TR r L LN I LTI LI TIE R TI LI IILIITI R EI LI LI I I I EITILIITI LI ITIIII It irrnrn

! FAULT HANDLERS: !
R RN R R R R R R R R R R R R R AR R R R A RN E

handle pod_timeout enabled line
recover (}

end handle

handle pod timeout_ recovered
recover ()

end handle

handle pod timeout no_clk
end handle

trtrrtrtrrptnr IR LLILCLILILLLIELILI I IR IR ELILIRIOLIRIRICRIOLIGEI ISR RILEITTILIIIOGPIIILIGLITTITLILILITLIIIIIILI

! Main part of STIMULUS PROGRAM !
SRR RN RN R R R R R RN RN RN RN RN R R R R AR

recover times = 0

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modi®

end if

print "Stimulus Program CTRL_OUT2"

I Set addressing mode and setup measurement device.

S podsetup ‘enable ~ready' "off"
podsetup ‘report power' "off"

podsetup 'report forcing' "off™
podsetup 'report intr' "off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup 'report control' "off"®
io byte = getspace space "i/o", size "byte"
mem word = getspace space "memory", size "word"
reset device devname
sync device devname,mode "pod"
sync device "/pod”, mode "data"
old cal = getoffset device devname
setoffset device devname, offset (1000000 - 70}

{ Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem word)
rampaddr addr $E0000, mask $1E
rampdata addr $50000, data 0, mask $F
setspace (io_byte)
rampaddr addr 0, mask $3FQ0Q
rampdata addr $2000, data 0, mask $F
readout device devname ! End response capture.

setoffset device devname, offset old cal

podsetup 'enable ~ready' "on"
end program

Figure 4-101: Stimulus Program (ctrl_out2) - continued

Bus Buffer

STIMULUS PROGRAM NAME: CTRL OUT2
DESCRIPTION: SIZE: 261 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src with SIG ILVL 1VL Mode Counter Range Pin
U15-5 I/0 MODULE 0000 10 0 TRANS
Ul15-8 PROBE A5B1 10 TRANS
Ul5-8 I/0 MODULE ASBl 10 TRANS
Ul5-9 PROBE AB41 10 TRANS
Ul5-9 I/0 MODULE A841 10 TRANS
Ul5-11 PROBE 448E 10 TRANS
Ul5-11 I/0 MODULE 448E 10 TRANS
Ul5-12 PROBE F383 10 TRANS
Ul5-12 I/0 MODULE F383 10 TRANS
Ul5-13 I/0 MODULE BAFD 1 TRANS
Ul15~17 I/0 MODULE ECCF 10 TRANS
U5-8 I/0 MODULE FE73 10 TRANS
U45-8 I/0 MODULE BAFD 10 TRANS
U56~-6 PROBE 448E 10 TRANS
U56-6 I/0 MODULE 448E 10 TRANS

Figure 4-102: Response File (ctrl_out2)

4-268

O

Bus Buffer

program ctrl out3

in the kernel area of the UUT.

TEST PROGRAMS CALLED:
recover {)

frc int ()

GRAPHICS PROGRAMS CALLED:
{none})

Local Variables Modified:
devname
io_byte
mem_word

Global Variables Modified:
recover_times

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then-re-enable the READY input !
to the ped. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. 1In i
some cases the pod can get outt
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

!

1
Pod program to Force Interrupt!
Ack. !

1
i
1
1
1
Measurement device !
I/0 BYTE address space !
MEMORY WORD address space !
1
1
1
1

Reset to Zero

(continued on the next page)

Figure 4-103: Stimulus Program (ctrl_out3)

4-269

Bus Buffer

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = clip ref "Ul5"

end if

print "Stimulus Program CTRL OQUT3"

! Set addressing mode and setup measurement device.

io_byte = getspace space "i/o", size "byte"
mem word = getspace space "memory”, size "word"
podsetup ‘report power*' "off"

podsetup 'report forcing' "off"

podsetup 'report intr' "off*

podsetup ‘report address* "off"

podsetup ‘report data*' "off"

podsetup 'report control' "off"

reset device devname

podsetup 'intr ack on'

sync device "/pod”, mode "inta"

sync device devname, mode "pod"

! Present stimulus to UUT.

arm device devname ! Start response capture.
execute frc int () ! Force Interrupt Ack.
readout device devname ! End response capture.

end program

Figure 4-103: Stimulus Program (ctrl_out3) - continued

4-270

Bus Buffer

STIMULUS PROGRAM NAME: CTRL OUT3
DESCRIPTION: SIZE: 282 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With sIG IVL IVL Mode Counter Range Pin
Ul5-5 I/0 MODULE 0000 10 TRANS
Ul5-8 PROBE 0001 10 TRANS
U15-8 I/0 MODULE 0001 10 TRANS
U15-9 PROBE 0001 1 TRANS
Ul5-9 I/0 MODULE 0001 1 TRANS
Ul5-11 PROBE 0001 1 TRANS
Ul5-11 I/0 MODULE. 0001 1 TRANS
Ul15-12 PROBE 0001 1 TRANS
Ul5-12 I/0 MODULE 0001 1 TRANS
Ul15-13 I/0 MODULE 0000 10 TRANS
Ul15-17 I/0 MODULE 0000 10 TRANS
U4-3 I/0 MODULE 0000 10 TRANS
Us-8 I/0 MODULE 0001 10 TRANS
U45-8 I/0 MODULE 0001 10 TRANS
U56-6 PROBE 0000 10 TRANS
U56-6 I/0 MODULE 0000 10 TRANS
Ul5-4 I1/0 MODULE 0000 10 TRANS

Figure 4-104: Response File (ctrl_out3)

4-271

Bus Buffer

Summary of Complete Solution for Bus Buffer 4.10.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Bus Buffer functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in

this manual for each file.
UUT DIRECTORY
(Complete File Set for Bus Buffer)
Programs (PROGRAM):
TST_BUFFER Functional test Section 4.10.5
ADDR_OUT Stimulus Program Figure 4-4
DATA_OUT Stimulus Program Figure 4-6
CTRL_OUT1 Stimulus Program Figure 4-8
CTRL_OUT2 Stimulus Program Figure 4-101
CTRL_OUT3 Stimulus Program Figure 4-103
ROMI1_DATA Stimulus Program Figure 4-16
Stimulus Program Responses (RESPONSE):
ADDR_OUT Figure 4-5
DATA_OUT Figure 4-7
CTRL_OUT1 Figure 4-9
CTRL_OUT2 Figure 4-102
CTRL_OUT3 Figure 4-104
ROMI1_DATA Figure 4-17
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-272

Address Decode

Q ADDRESS DECODE FUNCTIONAL BLOCK 4.11.

Introduction to Address Decode Circuits 4.11.1.

The Address Decode circuit of a UUT typically consists of the
decoder ICs, an address path from the microprocessor to the
decoder ICs, and the decoder outputs that select the peripheral
devices on the UUT. Figure 4-105 shows such a circuit.

Many microprocessor systems contain an address latch or a
buffer between the microprocessor and the address decoder ICs.
The decoder ICs generally contain combinatorial logic that
asserts one and only one of the decoder outputs for a given
range of addresses. The address decoder typically has one or
more enable input pins. The signals feeding these pins may be
address lines or outputs from other decoders.

In some cases, the address decode logic is just one part of an
LSI chip. In this situation, the LSI component should be
partitioned so that only those inputs and outputs that relate to
address decoding are part of the Address Decode functional
block. :

Considerations for Testing and
Troubleshooting 4.11.2.

Use the 9100A/9105A's I/O module to test address decoding
circuits. The general procedure is to characterize all decoder ICs
and paths in the address decoding circuit of a known-good
UUT, and then perform the same procedures on the suspect
UUT, comparing results.

For each decoder IC in the circuit, the following test procedure
can be used from the operator's keypad:

1. Clip the I/O module onto the IC.

2. Synchronize and arm the I/O module (see the
Ci Technical User’s Manual for this procedure).

4-273

Address Decode

4-274

Micro-
processor

Address
Decoder

Enable

—>

S

—»

— Decoder
— Outputs
—»

.
-

—>
—>
—>
— Decoder
— Outputs
L—p

—>
>

Address
ﬁ/ Decoder
MEMIO # Enable
—————N] Address
Address Bus J} Buffer Buffered Address Bus

Figure 4-105: Typical Address Decode Functional Block

Address Decode

3. Run a stimulus procedure to make each output go
high and low.

4. Use the SHOW I/O MOD command on the I/O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Since decoder outputs are typically asserted only over a specific
address range, your stimulus procedure should also perform its
reads and writes within that range for each decoder output. For
example, consider a decoder with eight outputs, as follows:

Decoder Address
Cutput Range (hex)
~Y0 0-7FF

~Y1 800-FFF
~Y2 1000-17FF
~Y3 1800-2FFF
~Y4 3000-37FF
~Y5 3800-3FFF
~Y6 4000-47FF
~Y7 4800-4FFF

A stimulus procedure to test the first output, ~Y0, might consist
of the following:

READ ADDR 0
READ ADDR 7FF

This will test the end points of the valid address range for ~YO0,
to verify that ~YO is asserted (low) within that range. The same
pair of reads within the valid address range of ~Y1 will test that
~YO0 is not asserted (high) outside the valid address range of
~Y0. You can use this strategy to test all of the decoder outputs
with only 16 read operations.

4-275

Address Decode

If the outputs of a decoder IC are bad and the inputs are good,
suspect the IC and/or suspect shorts on the output signal paths.
If the decoder inputs are bad as well, trace back toward the
microprocessor. If your UUT has address latches or buffers,
perform a similar test on them. :

Watch for decoder ICs that are enabled only during reads or
writes. Use the appropriate stimulus command (read or write)
on these ICs.

Address Decode Circuit Example 4.11.3.

4-276

Figure 4-106 shows the address decode circuit (U8, U9, and
U21) in the Demo/Trainer UUT. It selects the memory or I/O
component being addressed. Some of the buffered address lines
and bus controller lines are used to enable the following decoded
address output lines (all have active low outputs):

Address
Range Circuit
Output Enabled Enabled

RAMO 00000-OFFFF 64K byte dynamic RAM

RAMI 10000-1FFFF 64K byte dynamic RAM
VRAM 20000-2FFFF Video RAM
IPOLL 30000-3FFFF Interrupt polling

SPARE1 40000-4FFFF (decode complete signal)

SPARE?2 50000-5FFFF (decode complete signal)

ROMO E0000-EFFFF 64K byte ROM, U29 and U30

ROM1 FO000-FFFFF 64K byte ROM, U27 and U28

VIDSLT 00000-01FFE Video controller

I/OSLT 02000-03FFE RS-232 port and the ASCII
keyboard

PPISLT 04000-05FFE Outputs to seven-segment
displays and inputs from test
switches S1 through S4

Address Decode

Keystroke Functional Test 4.11.4.

1. Use a 16-pin clip module on side A of I/O module 1 to test
the decoded signals.

2. Use the SETUP MENU key with the commands below:

SETUP POD ENABLE ~READY QFF
SETUP POD REPORT FORCING SIGNALS OFF

3. Use the SYNC, I/O MOD, and STIM keys with the
commands below for each of the following parts: U8, U9
and U21. The correct measurements for each pin are shown
in the response table in Figure 4-106.

SYNC I/0 MOD 1 TO POD DATA
ARM I/O MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR (0 MASKED BY F0000
(ADDR OPTION: MEMORY WORD)
RAMP ADDR (0 MASKED BY F000
(ADDR OPTION: I/O BYTE)
SHOW I/O MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN" column of the
response table in Figure 4-106.

4-277

Address Decode

4. After completing the test, use the SETUP MENU key with
the commands below to restore the settings for POD
ENABLE and POD REPORT:

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

4-278

Address Decode

(This page is intentionally blank.)

4-279

Address Decode

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

4-280

Address Decode

READY READY
CIACUIT
i
| mEsET cLack
& BESET

ALS04
L 4 2 +5v
L5142 |4
u1a "
3 [, S gl5_ DISABLE
1 u7?
ALE - 2 [x gLe_NC
=
ALSO4 R
3 4 _Tl-‘ OYNAMIC
- aAM FAMADY
1
DISABLE TIMING
SWi-3 4 MALS138 45 FAMO _ 00000-OFFFF
iag 3 14 5 gs; % 14 FAAMI 10000-1FFFF —
M/ T0 - 61 Ve 13 VRAM 20000-2FFFF - VIDED | VRARRDY
218 c 73|42 TPOLL 30000-3FFFF =
217 8 w1 — CONTROL
215 a vEpl SPAREL 40000-4FFFF
5 pi0 SPARES | SO000-SFFFF - VIDSLT
. ¥7(9 NC S —
E
ug INTERBUPT INTADY
ALS04 CIRCUIT
1a1g 3 4 4 ALSI38 45 Ng .
L BEA YO 44 wC +5V | SEARET
— us7y o G2 Y1 } E.F:_F.'.Ef,
IM/ IO 51 v pi3 NC 10 SPAREZ
1418 C Y3 |12 NC aWa-7
Iai? 2 g ¥4 S
TAL6 s v i: :E - AOMOADY.
Je 1 ROM AOMIADY
Y7 | | E00DD-EFFFF =
~ [FOO0U-FFFFF —
Vs e - /080T |
a00 . ALS138 45 WIDSLT 0000-1FFE
— G2k YO |34 FFOSLT =2000-3FFE SERIAL
M/ I0_____ s g6eE 11 43 PPISLT A4COO-SFFE e 1/0
con/INTA ; g‘ % P '
A15 3 —_— . PPISLT
3 | FFISLT
Al4 E i‘ :_‘5‘ 11 NC =
A13 P |
VE 10 NC t
¥7| 9 nC J PARALLEL |
|
Uzt 7 NC I/0

Figure 4-106: Address Decode Functional Test

4-281

Address Decode

Programmed Functional Test 4.11.5.

4-282

The tst_decode program is the programmed functional test for
the Address Decode functional block. This program checks the
three address decode ICs (U8, U9 and U21) using the gfi test
command. If the gfi test command fails, the abort _test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort test

program).
program tst_ decode

! FUNCTIONAL TEST of the DECODE functional block. !

! This program tests the DECODE functional block of the Demo/Trainer. !
t The gfi test command and I/0 module are used to clip over the decoders!
! and perform the test. !

!
1
1
1
1
! 1
! TEST PROGRAMS CALLED: !
t abort_test (ref-pin) If gfi has an accusation !
! : display the accusation else 1
t create a gfi hint for the 1
! ref-pin and terminate the test!
! program (GFI begins trouble-

! shooting}. !
1

declare
global string decode checked = "" ! Record this test was run
end declare

if decode checked <> "yes" then
decode_checked = "yes"
print *\nl\nlTESTING ADDRESS DECODE"

podsetup '‘enable ~ready' "off"
podsetup ‘report forcing' "off"

if gfi test "UB-15" fails then abort_ test (*U8-15")
if gfi test "U9-7" fails then abort_test ("U9-7")
if gfi test "U21-15" fails then abort_test ("U21~15")

print “ADDRESS DECODE TEST PASSES™
end if
end program

Address Decode

Stimulus Programs and Responses 4.11.6.

Figure 4-107 is the stimulus program planning diagram for the
Address Decode functional block. The decode stimulus program
performs an access at each decoded address space. The addr_out
stimulus program exercises the address lines. The reset_low
stimulus program checks the reset signal when the test operator
presses the Demo/Trainer UUT RESET pushbutton.

4-283

Address Decode

Stimulus Program Planning

PROGRAM: RESET_LOW

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A LOW LEVEL

MEASUREMENT AT:

U19-4

4-284

Address Decode

RESET cLock
1 & AESET
CLK) . } I
READY 80285
MICROPROCESSOR
aus
BUFFER
5 OISABLE
o A4 ur
ALE 2 |k g@pE_NC
ALSO04) — o -~
S ‘]‘15 DYNAMIC |
,/“‘\\ S FAMACY
,r . | = RAM
{ Uis
% - OISABLE J TIMING
swi-a | q ALS138 _oooog-orrer |
1419 3 14 5 “_g;; % [10000-1FFFF —
M/ﬁ 5 G1 vz ____20000-2FFFF YIDED
A18 3 ¥3 -
AD 3lc’ ¥s 30000-3FFFF e CONTROL
2 T il :_5 SPAREL _ 40000-4FFFF .
Y& L0 SPAREZ 50000-5FFFF - _ vipslT]
w7]
| I
- INTERAUPT TNTAOY
LS04 | CIRCUIT
a1 3 4 pLsi3s .
- ﬂ SPARE 1
- us7 5 4GEF VIp_——
IM/I0 1 YE N S
e c v S
I a a4 -
as7 : &l HOMOADY
¥& AOM RAOMIADY
7 ‘
~ R ¥
us T/08LT
. ALS138 PHE VIGELT 0000-1FFE SERTAL
i:‘?%a 5 Ges vy pidl I7OSLT =2000-3rFE - 1/0
= o vz 43 FPISLT 4000-SFFE
,\:5’ A 3¢ % 18 NG FRIELT
a1a z | B T4la1 NC _ i
213 S L Y gy
1433 0 1 V6 pi0 NE
ALY PARALLEL
p— e I/0
[T .l !

Figure 4-107: Address Decode Stimulus Program Planning

4-285

Address Decode

program decode

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

recover 4} The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program 1
resynchronizes the pod and the!
bus controller. t

GRAPHICS PROGRAMS CALLED:
{none)
devname Measurement device

Global Variables Modified:

1
1

1

1

i

1

1

1

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALIED: !
1

1

1

i

1

1

1

1

1

1

1

i1

1

1

1

1

! recover_times Reset to Zero
1

1
1
!
!
Local Variables Modified: !
1
1
!
1
1

i FAULT HANDLERS: !

trrrrrrrrrrrbbLLLLLLIOLOLLEI RO RLI LRI LILIIOLIGLIOLI PRI RO RRLIOLILI RIS IO TEIRIGEILPIT IO LTI LI IS LIITTIIITIITIIETIILILIILIILY

handle pod timeout enabled line
recover ()
end handle

(continued on the next page)

Figure 4-108: Stimulus Program (decode)

4-286

Address Decode

handle pod timeout_recovered
recover ()
end handle

recover times = 0

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program DECODE"
! Set addressing mode and setup measurement device.

podsetup ‘'enable ~ready‘' "off"

podsetup ‘'report power' "off"

podsetup ‘'report forcing' "off*

podsetup 'report intr' "off"

podsetup ‘report address' "off"

podsetup ‘report data! "off"

podsetup 'report control* "off"

io_byte = getspace space "i/o", size "byte"
mem word = getspace space "memory", size "word"
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data”

old cal = getoffset device devname

setoffset device devname, offset (1000000 - 56}

! Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem word}
read addr 0 ! RAMO
read addr $10000 ! RAM]
write addr $20000, data 0 ! VRAM (write only)
read addr $30000 ! IPOLL
read addr $40000 ! SPARE1
read addr $50000 ! SPARE2
read addr $SE0000 ! ROMO
read addr $FQ000 ! ROM1
setspace (io_byte)
read addr O ! VIDSLT
read addr $2000 ! I/OSLT
read addr $4000 ! PPISLT

readout device devname ! End response capture.
setoffset device devname, offset old cal

podsetup ‘'enable ~ready' "on"
end program

Figure 4-108: Stimulus Program (decode) - continued

4-287

Address Decode

STIMULUS PROGRAM NAME: DECODE
DESCRIPTION: SIZE: 392 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ug-15 1/0 MODULE 03F9 10 TRANS
Ug-14 1/0 MODULE O05F6 10 TRANS
) Ug-13 I/0 MODULE O06F1 10 TRANS
Q Ug-12 I/0 MODULE 0772 10 TRANS
] Ug-11 I/0 MODULE 07B3 10 TRANS
Ug-10 I/0 MODULE 07D3 10 TRANS
U9-9 I/0 MODULE O07E3 10 TRANS
U9-7 I/0 MODULE O07FB 10 TRANS
U21-15 PROBE 07F7 10 TRANS
U21-15 I/0 MODULE O07F7 10 TRANS
U21-14 PROBE 07F1 10 TRANS
U21-14 I/0 MODULE O07F1 10 TRANS
U21-13 I/0 MODULE 07F2 10 TRANS
U7-5 I/0 MODULE 0000 10 TRANS
Ul9-2 I/0 MODULE 08675 10 TRANS
U19-4 I/0 MODULE O07F3 1 TRANS
U45-3 I/0 MODULE O7FB 10 TRANS
U45-6 I/0 MODULE O7E3 10 TRANS
Us5-11 I/0 MODULE 07F3 1 TRANS
U4-3 1/0 MODULE O07F3 1 TRANS
U57-2 I/0 MODULE 0637 10 TRANS
Us7-6 I/0 MODULE 0081 10 TRANS

Figure 4-109: Response File (decode)

4-288

Address Decode

Summary of Complete Solution for
Address Decode 4.11.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Address Decode functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Address Decode)
Programs (PROGRAM):
TST_DECODE Functional Test Section 4.11.5
DECODE Stimulus Program Figure 4-108
ADDR_OUT Stimulus Program Figure 4-4
RESET_LOW Stimulus Program Figure 4-115
Stimulus Program Responses (RESPONSE):
m DECODE Figure 4-109
- ADDR_OUT Figure 4-5
RESET_LOW Figure 4-114
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-289

Address Decode

(This page is intentionally blank.)

4-290

Clock and Reset

CLOCK AND RESET FUNCTIONAL BLOCK 4.12.

Introduction to Clock and Reset Circuits 4121,

Microprocessor-system clock circuits may generate single
periodic digital signals or multiple signals representing different
phases of a single time base. Both types of clocks may be
present in a UUT. Clock circuits typically include circuitry for
buffering and/or dividing clock sources.

Reset circuits range in complexity from simple resistor-capacitor
networks to several IC's. Often a single switch, IC, gate, or
monostable multivibrator serves as the reset circuit. Some
UUTSs have watchdog timers which automatically reset the UUT
if the microprocessor gets lost in a program.

Considerations for Testing and
Troubleshooting 4.12.2.

Clocks

When clocks circuits fail, most other functional blocks will also
fail. Clock problems are usually associated with only a few
components. Here are some guidelines:

® Open or stuck nodes on the crystal oscillator.
Manufacturing defects or failed components may cause
stuck or open lines on ICs used as oscillators.

® DC or capacitive loading on the outputs of the oscillator.
A stuck or tied line may load the oscillator output so that it
cannot generate a signal.

® Failed counter or flip-flop deriving lower frequency
signals from the master clock. Pullup or pulldown
resistors establishing static logic levels on unused counter
or flip-flop inputs may be short or open.

4-291

Clock and Reset

® Failed clock-generator IC. Clock generator ICs may fail
due to manufacturing defects or shorted or tied inputs.

Frequency measurements with the probe or I/O module are a
good way to trace clock-related problems. For measurements
above 10 MHz, use the probe; measurements below that
frequency can be made with the I/O module.

The Demo/Trainer UUT stimulus program called frequency, in
Section 4.12.6, shows how to program the I/O module to
measure frequency. The frequency of the clock is measured
three times during a 9100A/9105A LEARN operation on a
known-good UUT, when the response file is created. If the
value of the clock is stable, a single decimal value is recorded.
If the value of the clock is unstable, the highest and lowest
values are recorded. With frequency or transition counts, the
min-max range must be large enough to account for variations
between UUTs and variations due to environmental factors,
such as temperature and humidity. To establish the range, first
learn the response from a known-good UUT, then adjust the
range for appropriate tolerance factors.

Some clock-related problems, such as injected noise, marginal
signals, or asymmetrical phases, are hard to detect with digital
test equipment. The probe, which operates at up to 40 MHz, is
very useful for these problems. Asynchronous level history
measurements with the probe can detect marginal signal levels
and noise. If, after measurements with the probe, the UUT still
exhibits erratic clock behavior, check the quality of the clock
signal with a high-bandwidth oscilloscope.

Reset

Asynchronous level history is a useful measurement technique
with which to verify the operation of a reset circuit.

Several 9100A/9105A devices are useful in detecting reset
faults. The probe can be used to verify static logic levels on
circuit nodes. The I/O module can be used to overdrive the
Reset input to verify operation. Since most Reset lines connect

4-292

Clock and Reset

to the microprocessor, the pod can sense whether this line is
active. In setting up test fixturing, it is helpful to connect the
Reset line to a test point or test connector attached to an I/O
module line. This allows the test program to automatically reset
the UUT at the start of a test sequence.

Verify operation of the Reset line in both states. The
Demo/Trainer UUT stimulus programs called reser low and
reset_high, in Section 4.12.6, show how the probe and I/O
module can be used to troubleshoot reset circuits.

For reset circuits that use a switch or pushbutton, the operator
must usually be involved. A prompt to the operator can be
displayed, asking that the switch be pressed during certain
modes of the test while measurements are performed.

Clock and Reset Example : 4123.

The clock source in the Demo/Trainer UUT is a 31.9399 MHz
oscillator (U18). This frequency is divided by two and by four.
The 8 MHz signal is used by the 82284 clock generator (U1) to
generate the microprocessor clock signals. The 31.9399 MHz
signal is also used in the Video Ready generation circuit.

The 15.9799 MHz signal is used as the clock source for the
video circuit. The Reset signal is controlled by the RESET
pushbutton switch. Pressing this switch causes an active Ready
signal to be generated.

4-293

Clock and Reset

Keystroke Functional Test 4.12.4.
Part A:

Measure frequency of clock signals with the probe, using the
PROBE and SOFT KEYS key with the command below:

FREQ AT PROBE =

The pins to be probed and the correct measurements at each
pin are shown in the response table in Figure 4-110.

Part B:
Operate the RESET switch and measure the level of Ul-12
with the probe, using the PROBE and SOFT KEYS key
with the command below:
INPUT PROBE LEVEL =

The pins to be probed and the correct measurements at each
pin are shown in the response table in Figure 4-111.

4-294

A A e 3 5

Clock and Reset

(This page is intentionally blank.)

4-295

Clock and Reset

Keystroke Functional Test (Part A)

CONNECTION TABLE

iNONE] -

u1
uzs

RESPONSE TABLE

4-296

Clock and Reset

EXTERNAL
RESET

OSCILLATOA

+5Y

—
. . & W
POWER-DN LED T os1

S |

80286 |

— | MICROPROCESSOR

1

VIDEQ |
| T |
[1 i CONTROL i
N —— (|
! oYdaMIC |
| RAM I
™ TIMING |
H H
——
+5V +5V i
| +5v a |
s awhz
vIDED
oUTPUT

Figure 4-110: Clock and Reset Functional Test (Part A)

4-297

Clock and Reset

Keystroke Functional Test (Part B)

CONNECTION TABLE

S8 i1z

STIMULUS AND RESPONSE TABLE

4-298

Clock and Reset

POWER-ON LED

50 4
+5v - 80286
82284 — MICROPROCESSOR
ag 1l Bas32 |§< =7]
a.7x oAy 16057 meser .
AES i
tEY B esT olk b0 GLK - VIDED
MC 7 1y poLK b13 PCLK ;
- CONTROL
NE B xm f
BMHZ 5 J S
4 EFT
T _—
| DYNAMIC }
™ HAM |
—_— SEUHZ = TIMING [
If'—\ | o esv
[! OSCILLATOR 10
v 3IEMHZ N =]
’ !_”] i1 g = a 9 1EMHZ
) 7 _NC
|
i I +5v
! 1EMHZ VIDEQ
o QUTRUT
(\ Figure 4-111: Clock and Reset Functional Test (Part B)

4-299

Clock and Reset

Programmed Functional Test 4.12.5.

4-300

The #st_clock program is the programmed functional test for the
Clock and Reset functional block. Ul is a signal conditioning
IC for the Clock, Reset, and Ready signals, however the
tst_clock program tests only the Clock and Reset portion of the
chip.

The #st_clock program uses the gfi status command to determine
if U1 has previously been tested using gfi tesz. If U1 has not
been tested, a gfi test of Ul is performed. The gfi status

command is then used to determine if the Clock and Reset
outputs of Ul failed. If the outputs failed, the abort test

program is executed and GFI troubleshooting is started. (See
the Bus Buffer functional block for a discussion of abort_test).

program tst_clock

! FUNCTIONAL TEST of the CLOCK and RESET functional block.

1
1 1
! This program tests the CLOCK and RESET functional block of the t
! Demo/Trainer. The gfl test command, I/0 module and PROBE are used to !
! perform the test. !
1
1
1
1
1

1
1
1
1
1
!
! TEST PROGRAMS CALLED:

! abort test (ref-pin) If gfi has an accusation
! display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting) . !
1

print "\nlTESTING CLOCK & RESET Circuit"

if {gfi status "Ul-10") = "untested” then
gfi test "Ul-10"

end if

if (gfi status "U1-12") "bad" then abort test (“Ul-12")

if (gfi status "U1-10") "bad" then abort_test ("Ul-10")

if {gfi status "U1-13"} "bad" then abort_test ("Ul-13*}

if gfi test "U25-9" fails then abort test ("U25-9"

|

print "CLOCK & RESET TEST PASSES”"
end program

Clock and Reset

‘ Stimulus Programs and Responses 4.12.6.

Figure 4-112 is the stimulus program planning diagram for the
Clock and Reset functional block. frequency is a general-
purpose stimulus program used to measure the frequencies of
various outputs around the Demo/Trainer UUT. reset_high
checks for a high-level Reset signal and reset low checks for a
low-level Reset signal.

4-301

Clock and Reset

Stimulus Program Planning

PROGRAM: RESET_LOW

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A LOW LEVEL

MEASUREMENT AT:

R10-1
ROTOEE

4-302

Clock and Reset

+5V

POWER-ON LED

+5v a0286
MICAOPROCESSOR
Yag 1 Bas3z
P
. 4 4. TH = CR1
10710 5 1 R
EXTEANAL l + €8 c§i$§gL
RESET 1 1“10uF
DYNAMIC
HaAM
B ~ TIMING

+5V
/—\\ Y
OSCILLATOA 10

32MHZ i
5 g
D 32NHZ| 13'ﬂ> uzs
e 70 |
1] |
{ [+ i
2 Jia |
. !
i _—
|
| VIDED
QUTPUT
(\ Figure 4-112: Clock and Reset Stimulus Program Planning

4-303

Clock and Reset

program reset_high

I STIMULUS PROGRAM characterizes the reset signal when high is active. !
! 1
! Stimulus programs and response files are used by GFI to back-trace !
! from a failing node. The stimulus program must create repeatable UUT !
I activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! (none) !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none} !
1 !
! Local Constants Modified: !
! CARRAGE RETURN Matches a carrage return input. !
! TRUE Value that is considered active TRUE!
1 1
t Local Variables Modified: !
! input_str Input from keypad !
! state Level returned from measurement !
! pinnum The pin number used by level command!
! finished State of loop loocking for condition !
! devname Measurement device !
IEEE R R R N R S R R R R R RSN

declare string CARRAGE RETURN = ""
declare numeric TRUE = 1

declare string input_str

declare numeric state = 0

declare numeric pinnum = 1
finished = 0

t Main part of STIMULUS PROGRAM !

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
measure_ref = gfi ref
if measure ref = "Ul" then pinnum = 12
if measure_ref = "Ull" then pinnum = 38

(continued on the next page)

Figure 4-113: Stimulus Program (reset_high)

4-304

Clock and Reset

if measure ref = "Ul3" then pinnum = 11
if measure ref = "U31" then pinnum = 35
if measure ref = "U19" then pinnum = 3
if measure ref = "U7" then pinnum = 15
else
devname = clip ref "Ui%
measure_ref = "U1"
end if

print "Stimulus Program RESET HIGH"
! Setup measurement device and prompt operator.

podsetup ‘report power® "off"

podsetup ‘report forcing' “off"

podsetup 'report intr' "off"

podsetup ‘report address' "off"

podsetup 'report data' "off"

podsetup 'report control' "off"

reset device devname

sync device devname, mode "int"

podsetup 'report forcing*® "off"

tlup = open device "/terml"™, as "update”

print on tlup ,"\O7WHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key if test is stuck.”

! Wait for a TRUE. Leave program if <ENTER> key is pressed.

loop until state = TRUE
arm device devname \ readout device devname

if devname = */probe" then

state = level device devname, type "async®
else

state = level device measure_ref, pin pinnum, type "async”
end if

if (poll channel tlup, event "input") = 1 then
input on tlup ,input str
if input_str = CARRAGE RETURN then return
end if
end loop

! Start response capture. End when POD detects reset.

arm device devname
strobeclock device devname
loop until finished = 1
X = readstatus({)
if (x and $10) = $10 then
strobeclock device devname
finished =1
end if
1f (poll channel tlup, event “input”} = 1 then
input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if
end loop
readout device devname
print "\nl\nl"

end program

Figure 4-113: Stimulus Program (reset_high) - continued

4-305

Clock and Reset

STIMULUS PROGRAM NAME: RESET HIGH
DESCRIPTION: SIZE: 78 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ul-12 PROBE 0001 10 TRANS
Ul-12 I/0 MODULE 0001 10 TRANS

Figure 4-114: Response File (reset_high)

4-306

Clock and Reset

program reset_low

1
t
Stimulus programs and response files are used by GFI to backtrace i
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for !
the outputs in the UUT that are stimulated by the stimulus program. !
1
1
1
1
1
1

TEST PROGRAMS CALLED:

check meas (device, start, stop, clock, enable) !
Checks to see if the measure- !
ment is complete using the
TL/1 checkstatus command. If !
the measurement times out then!
redisplay connect locations., !

1

GRAPHICS PROGRAMS CALLED: !
{none} !

1

Local Constants Modified: !
CARRAGE RETURN Matches a carrage return input. !
TRUE Value that is considered active true!

1

Local Variables Modified: !
input str Input from keypad !
state Level returned from measurement !
pinnum The pin number used by level command!
finished State of loop loocking for condition !
devname Measurement device !

! Main Declarations
TrrrrrrrprrrrbLLLLLLLLLOLIOLI R L RILIRIOLEILEIRITEIOLITRIETRTLITTITTITTITTIIIIRITTITIIIITTIITIITITIIIIILREI et

declare string CARRAGE RETURN = ""
declare string input_str
declare numeric state = 0
declare numeric TRUE = 4
declare numeric pinnum = 1
finished = 0
trrrrrrrrrrrrrtrtr et I I TN IR EILLLLIILIINILIILILII LRI ELIIIIEIITILILILIILIIIIIIIITRITLILILrt

! Let GFI determine the testing device.

if (gfi control) = "yes" then
devname = gfi device
measure ref = gfi ref

(continued on the next page)

Figure 4-115: Stimulus Program (reset_low)

4-307

Clock and Reset

if measure ref = "Ul" then pinnum = 11
if measure ref = *U13" then pinnum = 13
if measure ref = "U19" then pinnum = 4
if measure ref = “U7" then pinnum = 15
else
devname = clip ref "U1"
measure_ref = "Ul"
end if

print "Stimulus Program RESET LOW"
! Setup measurement device and prompt operator.

podsetup 'report power‘® "off"

podsetup 'report forcing' "off"

podsetup 'report intr* "off"

podsetup 'report address' "off"

podsetup ‘'report data‘' “off"

podsetup 'report control* "off"

reset device devname

sync device devname, mode "int"

podsetup ‘'report forcing' "off”"

tlup = open device "/terml", as "update”

print on tlup ,"\O7WHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key if test is stuck.*

{ Wait for a TRUE. Leave program if <ENTER> key is pressed.

loop until state = TRUE
arm device devname \ readout device devname
if devname = "/probe* then
state = level device devname, type "async"

else

state = level device measure ref, pin pinnum, type "async"
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,input str
if input str = CARRAGE RETURN then return
end if
end loop

! Start response capture. End when POD detects reset.

arm device devname
strobeclock device devname
loop until finished =1
x = readstatus(}
if (x and $10) = $10 then
strobeclock device devname

finished = 1
end if
if (poll channel tlup, event "input") = 1 then

input on tlup ,input_str
if input_str = CARRAGE RETURN then return
end if
end loop
readout device devname
print "\nl\ni®

end program

Figure 4-115: Stimulus Program (reset_low) - continued

4-308

Clock and Reset

STIMULUS PROGRAM NAME: RESET LOW
DESCRIPTION: SIZE: 146 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG VL IVL Mode Counter Range Pin
U13-10 PROBE 0002 10 TRANS
U13-10 I/0 MODULE 0002 10 TRANS
Ul9-4 I/0 MODULE 0002 10 TRANS
R10-1 PROBE 0002 1 O TRANS
R9-2 PROBE 0002 1 0 TRANS
R9-2 I/0 MODULE 0002 1 O TRANS

Figure 4-116: Response File (reset_low)

4-309

Clock and Reset

program frequency

ISR R R R R RN R R R R R R R R R R R RSO EEER N

STIMULUS PROGRAM to measure frequencies.

Local Variables Modified:
devname Measurement device

Global Variables Modified:
{none)

1 1
1 1
t Stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
! This is a general purpose routine that can be used to characterize !
! any free-running system clock, dot clock, etc... !
! When measuring frequency no stimulus is normally applied because the !
! signal begins running at power on. !
1 !
! TEST PROGRAMS CALLED: !
! {none} 1
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none) !
1 1
1 1
1 1
1 1
1 1
t 1
1 1

! FAULT HANDLERS: !
RSN RN R R RN RN R R R R R R R RN NN R R R AR R R RN R RSN R R RO

handle pod_timeout_no_clk

end handle
trrrrrr T T LT TR LTI RRITTITRIRIOLRIRILITILITITITITII I I TITIRIS LI TITII IO I I LIRS LITLRITIITITITRITITLTIRISLITLTIITILILIEILILI Tttt

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl®

end if

print "Stimulus Program FREQUENCY"

! Set addressing mode and setup measurement device.

podsetup 'report power' "off"
podsetup ‘report forcing' "“off"
podsetup 'report intr® "off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup ‘report control' "off"
reset device devname

counter device devname, mode "freq"

! No stimulus is applied; response is frequency.
arm device devname ! Start response capture.

readout device devname ! End response capture.
end program

Figure 4-117: Stimulus Program (frequency)

4-310

Clock and Reset

STIMULUS PROGRAM NAME: FREQUENCY

DESCRIPTICON: SIZE: 370 BYTES
Response Data
Node Learned Async Clk Counter Priority

Signal Src With SIG ILVL IVL Mode Counter Range Pin
U1-10 PROBE 10 FREQ 7585000-8383000 U25-5
Ul-10 I/0 MODULE 10 FREQ 7585000~-8383000

U1-13 I/0 MCDULE 10 FREQ 3792000-4191000 U25-5
U25-5 PROBE 10 FREQ 7585000-8383000

U25-5 1/0 MODULE 10 FREQ 7585000-8383000

Uz25-9 PROBE 10 FREQ 15170000-16760000

U42-3 1/0 MODULE 10 FREQ 379200-419100

U42-7 I/0 MODULE 10 FREQ 758500-838300

U43-11 I/0 MODULE 10 FREQ 63200-69800

UsS6-12 PROBE 10 FREQ 63200-69800

U56-12 I/0 MODULE 10 FREQ 63200-69800

U13-2 PROBE 10 FREQ 7585000-8383000

Ul3-2 I1/0 MODULE 10 FREQ 7585000-8383000

Y1-1 PROBE 10 FREQ 3670000-3700000

Figure 4-118: Response File (frequency)

4-311

Clock and Reset

Summary of Complete Solution for
Clock and Reset 4.12.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Clock and Reset functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Clock and Reset)
Programs (PROGRAM):
TST_CLOCK Functional Test Section 4.12.5
FREQUENCY Stimulus Program Figure 4-117
RESET_HIGH Stimulus Program Figure 4-113
RESET_LOW Stimulus Program Figure 4-115
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
FREQUENCY Figure 4-118
RESET_HIGH Figure 4-114
RESET LOW Figure 4-116
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-312

Interrupt Circuit

INTERRUPT CIRCUIT FUNCTIONAL BLOCK 4.13.

Introduction to Interrupt Circuits 4.131.

Microprocessor-system interrupt circuits collect and prioritize the
interrupt output of each circuit that has an interrupt-request
output. These outputs come from circuits such as peripheral
devices (keyboards, disk controllers, modems, printers) and
dynamic RAM controllers. If there are enough interrupt signals,
the system may use an interrupt controller to prioritize interrupts.

In some systems, the microprocessor can read a pointer to a
branch address (called an "interrupt vector") from the
microprocessor's external bus. These systems may have
circuitry to generate the interrupt vector when the appropriate
interrupt signal is asserted. Quite often, the vector-generation
and interrupt-controller circuits are the same.

Figure 4-119 shows a typical interrupt circuit for a
MiCroprocessor system.

Considerations for Testing and
Troubleshooting 4.13.2.

The Interrupt Circuit is part of a feedback loop. Address and
data buses go out from the microprocessor to the various
components in the UUT and interrupt lines come back from
those components, through the Interrupt Circuit, to the
MmiCroprocessor.

The pod can break this feedback loop by selectively ignoring the
interrupt line to the pod. Particularly during troubleshooting, the
interrupt line must be ignored so the 9100A/9105A is not
interrupted while testing the interrupt circuitry.

4-313

Interrupt Circuit

Interrupt

Peripheral | Request
Component

Interrupt

Peripheral | Request
Component

Interrupt

Peripheral | Request
Component

4-314

Interrupt
Controller
and Interrupt
Vector
Generator

K Address Bus

Interrupt
Request

Micro-
processor

Figure 4-119: Typical Interrupt Circuit

Interrupt Circuit

The Interrupt Circuit can be tested by the following procedure:

1. Read or write to each component that can generate an
interrupt so that an interrupt is generated.

2. After each interrupt is generated, check to see that the
pod has detected the interrupt. If all interrupts are
detected by the pod, the interrupt circuit is good.

If the microprocessor on your UUT has the ability to fetch an
interrupt vector from its external bus, test the circuit that
generates that vector by reading or writing to a component and
thereby forcing that component to generate an interrupt. The
interrupt vector should be the same address as the read or write
address used to generate the interrupt.

Some pods (e.g. 8086, 8088, 80186, 80188, 80286, 68000)
can read interrupt vectors. The '86-family and '88-family pods,
for example, can read vectors automatically in response to an
interrupt input from the pod to the UUT, or by command from
the operator (TL/1 programs that perform these functions are
accessed with the POD key on the operator's keypad).

The availability of these automatic interrupt testing functions
greatly eases the test procedures. With these functions, the
procedure for testing interrupt vector generation circuits might
work like this:

1. Configure the pod to capture an interrupt vector (this
is usually called an "interrupt acknowledge cycle").

2. Write the interrupt vector to the interrupt controller or
Vector generator.

3. Perform some operation that causes the interrupt
controller to interrupt the pod and place a vector on
the UUT's bus. This operation may simply mean
overdriving an input to the interrupt controller.

4-315

Interrupt Circuit

Troubleshooting the interrupt circuitry is accomplished by
performing a procedure that causes each circuit with an interrupt
request output to activate that output. Then signatures are
recorded for all the nodes in the Interrupt Circuit. The steps to
perform this are as follows:

1. Generate an interrupt on each interrupt request line
that feeds into the interrupt circuit by performing the
appropriate reads and writes.

2. Measure the signatures for each node in the Interrupt
Circuit and compare to known-good signatures.

3. If an incorrect signature is found, follow that signal
back towards its source.

You may need to disable the reporting of active interrupts by the
pod when troubleshooting this circuit. If reporting is allowed
and the interrupt is asserted, you may be unnecessarily bothered
with "active interrupt” messages when the pod is used in
stimulus operations. Section 4.15.2, "Forcing Lines", in this
manual describes how to disable reporting of active interrupts.

Interrupt Circuit Example 4.13.3.

Figure 4-120 shows the Interrupt Circuit for the Demo/Trainer
UUT. This circuit uses two interrupts. The first, I/OINT, is
configurable to be active when a character is transmitted or
received through the serial port. The second, TIMER, is
configurable to be active when the timer in the DUART IC (in
the Serial I/O functional block) times out or when the output port
toggles the bit in the output register connected to the TIMER
output line.

Keystroke Functional Test 4.13.4.

4-316

1. Use the SETUP MENU, EXEC, and READ keys with the
commands below to disable interrupt trapping and to

Interrupt Circuit

initialize the Serial I/O functional block:

SETUP POD REPORT INTR ACTIVE OFF
EXECUTE RS232 INIT
READ ADDR 2016 =

(ADDR OPTION: I/O BYTE)

2. Use the READ key with the commands below to check the
status of interrupts in the UUT:

READ STATUS OF MICRO =
(Should be C0 with no interrupts)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
(Should be 27 with no interrupts)

3. Use the WRITE and READ keys with the following
commands to force an interrupt on TIMER (by setting output
OP3 low) and to check that the interrupt occurs:

WRITE DATA 0 TO ADDR 201A
(ADDR OPTION: I/0 BYTE)
WRITE DATA 8 TO ADDR 201C
(ADDR OPTION: I/O BYTE)
READ STATUS OF MICRO =
(Should be C8 with an interrupt)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
(Should be 25 with a TIMER interrupt)
WRITE DATA 8 TO ADDR 201E
(ADDR OPTION: I/0O BYTE)

4. Use the WRITE and READ keys with the following
commands to force an interrupt on I/OINT (by causing an
interrupt from RS232) and to check that this interrupt occurs:

WRITE DATA 10 TO ADDR 200A
(ADDR OPTION: I/O BYTE)
WRITE DATA 41 TO ADDR 2016
(ADDR OPTION: I/O BYTE)

4-317

4-318

Interrupt Circuit

(Should be C8 with an interrupt)
READ ADDR 30000 =

READ STATUS OF MICRO =

(Should be 22 with the I/OINT interrupt)
(ADDR OPTION: MEMORY WORD)
WRITE DATA 0 TO ADDR 200A

(ADDR OPTION: I/O BYTE)

5. Re-enable interrupt trapping by using the SETUP MENU
key to enter the following command:

SETUP POD REPORT INTR ACTIVE ON

Interrupt Circuit

(This page is intentionally blank.)

4-319

Interrupt Circuit

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SCOCKET

STIMULUS AND MEASUREMENT TABLE

4-320

Interrupt Circuit

INTR
| FEADT
+5v
80286
LE148 Ls373
LMICHDPHDCESSOR R33 10]5 aghd 3 [y Bo 1000
7k 98 AT
S SRR ST) o 2 bs p@sf S I001
. ENET e 7 e ooz
| L 1305 EEpitac 3 63 003
| 4 13 13 by Galt 004
B i Em TSV 14 . sl b 005
| D 7loe ool 46 1006
L | ISPARE 4 % 1807 g7l 19_IDo7
BUFFER ! E 11
| ? a0 4
- SWa-2 i e =~ S T
————— 15
[SERIAL | g | TIMER
| /0 - I/GINT ALS04
. FERD s [z a3t
! T
l . us?
S ALEO4
5
AODAESS b=
DECOOE

Figure 4-120: Interrupt Circuit Functional Test

4-321

Interrupt Circuit

Programmed Functional Test 4.13.5.

The tst_intrpt program is the programmed functional test for the
Interrupt Circuit functional block. This program checks the
interrupt poll register using the gfi test command. If the gfi test
command fails, the abort test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst intrpt

Trrrrr et n eI IIIIILILIIIILI I RIRIRIRLLIY

! FUNCTIONAL TEST of the INTERRUPT functional block.

1

! This program tests the INTERRUPT functional block of the Demo/Trainer.
! The gfi test command and I/0 module are used to perform the test.

1
! TEST PROGRAMS CALLED:

i abort_test (ref-pin) If gfi has an accusation

1 display the accusation else
! create a gfi hint for the

1 ref-pin and terminate the test!
H program {(GFI begins trouble- !
1 shooting). !
1

print "\nlTESTING INTERRUPT Circuit™"

podsetup 'report intr' "off"
if gfi test "U10-1" falls then abort test ("U10-1"}

print "INTERRUPT TEST PASSES"
end program

Stimulus Programs and Responses 4.13.6.

4-322

Figure 4-121 is the stimulus program planning diagram for the
Interrupt Circuit functional block. The decode stimulus program
performs an access at each decoded address space. The ##l_Ivi
stimulus program transmits a character out the serial port and
measures signals using TTL threshold levels. The inzerrupt
stimulus program generates interrupts in the Serial I/O circuit
and measures interrupt lines.

Interrupt Circuit

(This page is intentionally blank.)

4-323

Interrupt Circuit

Stimulus Program Planning G

PROGRAM: INTERRUPT

EXECUTES RS232_INIT AND EXERCISES INTERRUPT
LINES

MEASUREMENT AT:

U10-2,56.9,12,15,16,19
U20-6,79,15

R33-1

U5-11

4-324

Interrupt Circuit

I
AEADY .
CIRCUIT
| [+8Y
I ROCE '! | L5148 Ls373
MICROPAOCESSOR _' 3 o . oo
- SN S o
L 220F GE S 7 los o o
| 1343 wspldc E los AT
43 130n: gal 22 _I0D4
| S45 E0piS B 13los os[18 1005
1 =2]s C
.EIUS | ISPARE 4)5 Eg? g? B Ihoo
BUFFEA : 7 1
=
Swa-2 20 v L JoE
uio
l il P
[SERTAL - TR
| I 1/0 - TGN
i ' HEAD
| TFOLL
ADDRESS EEEEEE——
= =
pECODE INTA
L TRTAGY

() Figure 4-121: Interrupt Circuit Stimulus Program Planning

4-325

Interrupt Circuit

program interrupt

rrrrrrrrrrrbbbRRRbELLbOLOLLILOLCEE L ROEELILEOLE LI LRI REICELIOLILI I I EIRIOYRILEIEITIOLI P TIRIEIITITLITIOTISLITTITTILEITLILIILIILILIYL

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

! This stimulus program sets the DUART to cause an interrupt when data
is written to the transmit register. Immediately after the write to
! the register the interrupt vector is read from the bus (read @ 30000).

1

1

!

1

1

1

1

1

1

1

!

! TEST PROGRAMS CALLED:

! (none)

1

! GRAPHICS PROGRAMS CALLED:

! rs232_init () This is the initalization for
H
1
1
1
1
1
1
1
1

the DUART which contains a
timer used for interrupts.

Local Variables Modified:
devname Measurement device

Global Variables Modified:
{none) 1

! Main part of STIMULUS PROGRAM !
RS N NN R N S R R R R N R R S N R SRR R RN NSRS NN R]

i Let GFI determine the measurement device.

if (gfi control) = *“yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program INTERRUPT"

! Set addressing mode and setup measurement device,

reset device devname

execute rs232_init ()

write addr $200A, data $10 ! Set interrupt on tranmit - no loopback
setspace space (getspace space "i/o", size "byte")

sync device devname, mode "pod"

sync device "/pod", mode “data"

threshold device "/probe", level *ttl"

(continued on the next page)

Figure 4-122: Stimulus Program (interrupt)

4-326

Interrupt Circuit

! Present stimulus to UUT.

arm device devname ! Start response capture.
write addr $2016, data $55 ! Txd port B
setspace space (getspace space "memory", size "word")
read addr $30000 ! read the interrupt vector onto the bus.
setspace space (getspace space "i/o", size "byte")
write addr $2016, data $D ! Txd port B

setspace space (getspace space "memory", size “word")
read addr $30000
setspace space (getspace space "i/o", size "byte")
write addr $201C, data $FF
setspace space (getspace space "memory", size "word")
read addr $30000
setspace space {getspace space "i/o", size "byte")
write addr $201E, data S$FF ! Pulse timer interrupt.
setspace space (getspace space "memory", size "word")
read addr $30000

readout device devname ! End response capture.

end program

Figure 4-122: Stimulus Program (interrupt) - continued

4-327

Interrupt Circuit

STIMULUS PROGRAM NAME: INTERRUPT
DESCRIPTION: SIZE: 660 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ul0-6 PROBE 00AB 10 10 TRANS 4
Ul0-6 I/0 MODULE O0OAB 10 10 TRANS 4
U1l0-2 PROBE 00AB 10 10 TRANS 4
U10-2 I/0 MCDULE OOAB 10 10TRANS 4
U10-5 PROBE 005F 10 10 TRANS 2
U10~5 1/0 MODULE OOSF 10 1 0 TRANS 2
Ul0-9 PROBE 002a 10 1 0 TRANS 5
Ulo0-9 I/0 MODULE 002A 10 1 0 TRANS S
U10-12 PROBE 008B 10 10TRANS 5
Ul0-12 I/0 MCDULE 008B 10 10TRANS 5
U10-15 PROBE 005F 10 10 TRANS 2
U10-15 I/C MCDULE O0O5F 10 10TRANS 2
Ul0-16 PROBE 008B 10 10TRANS 5
Ul0-16 I/0 MODULE O008B 10 1 0 TRANS 5
U10-19 PROBE 000A 10 10TRANS 6
U10-19 I/0 MODULE 000A 10 10TRANS 6
U20-6 I/0 MODULE 0000 10 0 TRANS 2
U20-7 I/0 MODULE OOFE 1 1 TRANS 0
U20-9 I/0 MODULE 0000 10 0 TRANS 2
U20-15 PROBE OOFE 10 1 TRANS 2
U20-15 I/0 MODULE OOFE 10 1 TRANS 2
R33-1 PROBE OOFE 1 1 TRANS O
R33-1 I/0 MCDULE OOFE 1 1 TRANS O
Us-11 I/0 MODULE O0O0AB 10 TRANS

Figure 4-123: Response File (interrupt)

4-328

Interrupt Circuit

Summary of Complete Solution for
Interrupt Circuit 4.13.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Interrupt Circuit functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Interrupt Circuit)

Programs (PROGRAM):

TST_INTRPT Functional Test Section 4.13.5

CTRL_OUT3 Stimulus Program Figure 4-103

INTERRUPT Stimulus Program Figure 4-122

DECODE Stimulus Program Figure 4-108
Stimulus Program Responses (RESPONSE):

CTRL_OUT3 Figure 4-104

INTERRUPT Figure 4-123

DECODE Figure 4-109
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

4-329

Interrupt Circuit

(This page is intentionally blank.)

4-330

Ready Circuit

O READY CIRCUIT FUNCTIONAL BLOCK 4.14.

Introduction to Ready Circuits 4.141.

Some peripheral components have different (slower) timing than
the microprocessor. To accommodate these components, wait
states (extra clock cycles) are added to the read and write bus
cycles. The number of wait states inserted is typically controlled
by an input to the microprocessor called Wait, Ready, or
DTACK; in this discussion, we will call it the Ready signal.

Many microprocessor systems have a circuit that generates the
Ready signal in response to the selection of a peripheral
component. The circuit (Figure 4-124) typically consists of a
counter and/or a state machine that uses the microprocessor
clock. The inputs to the state machine include a strobe signal
from the microprocessor (to indicate that a bus cycle has started)
and the various decoder outputs that select the components
needing wait states.

In a given bus cycle, the state machine typically recognizes the
assertion of the microprocessor strobe signal, and looks at the
decoder signals to determine which component is being selected.
The state machine then asserts Ready for the appropriate number
of clock cycles.

Considerations for Testing and
Troubleshooting 4.14.2.

Ready circuits often involve multiple feedback loops between the
microprocessor and the ROM, RAM timing, and video control
circuits. Since these feedback loops may need to remain
unbroken while testing memory and/or video circuits, the Ready
circuit is tested separately. Here is a good way test the Ready
circuit:

1. Break the feedback loop by overdriving the lines that
form the feedback loop.

4-331

Ready Circuit

Ready Signal
—
Decoder
Outputs ___,
! —p| Ready
Micro- Counter
processor and State
Strobe Machine
Clock
Microprocessor
Clock Clock

4-332

Figure 4-124: Typical Ready Circuit

Ready Circuit

2. Exercise the rest of the inputs using microprocessor
reads and writes.

3. Measure the output of the loop.

A second approach is to use one I/O module to overdrive all the
inputs and another I/O module (or another clip on the same I/O
module) to measure the Ready output to the microprocessor.

Test each IC in the circuit individually, using the following
procedure:

1. Clip the I/O module onto the IC.

2. Synchronize and arm the I/O module (see the
Technical User's Manual for this procedure).

3. Run a stimulus procedure to make each output go
high and low (this may mean overdriving another
part of the circuit with another I/O module clip).

4. Use the SHOW I/O MOD command on the I/O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Compare the signatures gathered on the suspect UUT to those
from a known-good UUT to determine which pins are bad.

Test the timing properties of the state machine that actually
generates the Ready signal. You can do this with the external
Start, Stop, and Clock lines on the I/O module or clock module
to begin timing the wait states. Connect the external Clock line
to the Ready-circuit's clock input (the microprocessor clock).
Connect the Start line to the signal that starts the wait state
generation. Set the Stop count to the proper number of clock
cycles to verify that the wait state becomes active at the proper
time. If the Stop count is set properly, decreasing its value by 1

4-333

L IR

Ready Circuit

from the proper value should show that the wait state does not
become active and using the proper value should show that the
wait state is active.

Again, compare the responses gathered on the suspect UUT to
those from a known-good UUT to determine which pins are
bad.

If the outputs of the ICs are bad and the inputs are good, suspect
the IC and/or suspect shorts on the output signal paths. If the
inputs are bad as well, trace back toward the microprocessor. If
your UUT has address latches or buffers, perform a similar test
on them.

You may need to disable the Ready input to the pod and turn
reporting of forcing lines off when troubleshooting this circuit.
If the Ready input to the pod is enabled, and Ready is not
asserted for a long enough time due to testing operations, the
pod may timeout if it is being used in the stimulus operation.
Section 4.15.4, "Forcing Lines", in this manual describes how
to disable the Ready input to the pod.

Ready Circuit Example 4.14.3.

4-334

The Ready Circuit for the Demo/Trainer UUT is shown in
Figure 4-125. The microprocessor does not complete the
current bus cycle until an active Ready signal (a low) is received
from the Ready Circuit. Any circuit addressed to be read by the
microprocessor must return such a Ready signal. Some circuits
(ROMO, ROM1, and Interrupt) set SRDY low right away and
the read is completed on the next clock cycle. Other circuits
(Parallel I/O, Serial I/O, and Video Control) cannot match the
speed of the microprocessor and add three wait states for proper
timing. In addition, Dynamic RAM Timing may insert wait
states in order to delay until RAM refresh finishes, and Video
RAM may insert wait states to synchronize the microprocessor
with video scan sequences.

The microprocessor drives address lines, which go to address
decoding, and the outputs of address decode are inputs to the

Ready Circuit

Ready Circuit. The output of the Ready Circuit is an input to the
microprocessor, which forms a feedback loop. The pod is able
to break this feedback loop by ignoring and disabling the Ready
input.

The Ready Circuit has a second, more troublesome feedback
loop. The Ready output, U1-4, feeds back as an input to the
Ready Circuit at U4-12. This second feedback loop must be
broken in order to perform testing or troubleshooting on the
Ready Circuit.

Keystroke Functional Test . 4.144.

The functional test for the Ready Circuit uses two I[/O module
clips. One clip is used for measurement and the other clip is
used to overdrive Ready Circuit inputs (to break the Ready
Circuit feedback loop).

In the following procedure use one clip module to measure U1-
4, U4-6, and U17-11 outputs. Use the second clip module as
prompted by the program.

Part A:

1. Use a 20-pin clip module on side A of I/O module 1 and a

14-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit output.

2. Use the EXEC and I/O MOD keys with the commands below
for Ul and U4. The correct measurements for each pin are
shown in the response table of Figure 4-125.

EXECUTE UUT DEMO PROGRAM READY 1
The program will prompt:

Enter ref name (Choose Ul, U4, Ul4 OR U1l)5)

Type in U1 and press the ENTER key.

4-335

Ready Circuit

L

4-336

Follow the instructions to clip Ul and press the Ready
button on the clip module. Then clip U4 and press the
Ready button on its clip module.

SHOW I/O MOD 1 PIN 4 CAPTURED RESPONSES
SHOW I/O MOD 1 PIN 26 CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!O MOD PIN" column of the
response table in Figure 4-125. '

Part B:
1. Use a 14-pin clip module on side B of I/O module 1 to check
the Ready Circuit.

2. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #1 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 2
The program will prompt:
Enter ref name (Choose Ul, U4, U5, U6 or Ul7)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

Ready Circuit

SHOW I/O MOD 1 PIN 26 CAPTURED RESPONSES

3. Use a 14-pin clip module on side A of I/O module 1 to check
the Ready Circuit.

4. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #2 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 3
The program will prompt:
Enter ref name (Choose Ul, U4, U5 or U6)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

SHOW I/O0 MOD 1 PIN 26 CAPTURED RESPONSES

Part C:
1. Use a 14-pin clip module on side A of I/O module 1 and a

20-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit.

2. Use the EXEC and I/O MOD keys with the commands below
for U5. The correct measurement for each pin is shown in
the response table of Figure 4-127.

EXECUTE UUT DEMO PROGRAM READY 4
The program will prompt:

Enter ref name (Choose U4, U5 or Ul7)

4-337

Ready Circuit

Type in U5 and press the ENTER key.

Follow the instructions to clip U5 and press the Ready
button on the clip module.

Then clip U17 using the second clip module and press its
Ready button.

SHOW I/0 MOD 1 PIN 3 CAPTURED RESPONSES

Part D:

1. Use a 20-pin clip module on side A of I/O module 1 to check
the Ready Circuit I/O wait state generator.

2. Use the EXEC and I/O MOD keys with the commands below
for U17. The correct measurement for this step is shown in
response table #1 of Figure 4-128.

EXECUTE UUT DEMO PROGRAM READY 5
The program will prompt:

Enter ref name (Choose U5 or Ul7)
Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/0 MOD 1 PIN 17 CAPTURED RESPONSES

3. Use a 20-pin clip module on side A of I/O module 1 to check
the Ready Circuit I/O wait state generator.

4-338

SR A

Ready Circuit

4. Use the EXEC and I/O MOD keys with the commands below
for U17. The correct measurement responses for each step
are shown in response table #2 of Figure 4-128.
EXECUTE UUT DEMO PROGRAM READY 6
The program will prompt:
Enter ref name (Choose U5 or Ul7)

Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/O MOD 1 PIN 17 CAPTURED RESPONSES

Ready Circuit

Keystroke Functional Test (Part A)

CONNECTION TABLE

RESPONSE TABLE

4-340

Ready Circuit

—_—

BUS ALATCH BOZEE
- — -
BUFFER : MICROPROCESSOR
DYNAMIC | A
AnM L
TIMING | FEAGY
. .] B
i E2284
READY
I +5V =TT
| - . =8 ARDY)
i _ TEARET a ARDYEM
__SPAREE 3 - ﬂ AL
pyitEly \ SAOYEN 810
| = (131
ADORESS L 0 5] U8 v
DECODE ! g
- VAAMADY 11
+5Y a2 BAOY .
VIDEQ |
CONTROL o —
ALS0B ’7 Lssga
27 | +5W n
= D ="
CLOCK e
AND - CLK e
RESET
S — U7
INTERRUPT
CIRCUIT

Figure 4-125: Ready Circuit Functional Test (Part A)

4-341

Ready Circuit

Keystroke Functional Test (Part B)

CONNECTION TABLE

TEST ACCESS SOCKET U4-g

U4-11

RESPONSE TABLE #1

RESPONSE TABLE #2

4-342

Ready Circuit

FFISLT
INTROY

BUS ALATCH
BUFFER
R / |
OYNAMIC
AAM P E—
TIMING READY
1
— 82284
. 1681
15080 READY p2
AOM - +5Y 1 | AROY
T 'sv:n';;v ; - ARDVER
— 2
- = SROY
SPAREZ e A
]
| omiFOY 5| Vs u1
AODRESS 20";23* §~ U s
] | AMI
1 DECODE L
| VAARADY 11 |
T sV a2 SH0Y
VIOEQD ALEOD
CONTROL = o
E}
a
CLOCK :
AND = 5
RESET
INTERAUPT
CIACUIT T7050T g ALS10
L8,
VIDSLT

Figure 4-126: Ready Circuit Functional Test (Part B)

4-343

Ready Circuit

Keystroke Functional Test (Part C)

CONNECTION TABLE

RESPONSE TABLE

4-344

Ready Circuit

——
BUS ALATCH 80286
aurrEs .] MICROPROCESS0A
— ! |
DYMAMIC |
RAM -
TIMING e
ROM -—
= | w5V 4
- | SPAREL 2
| EPAREZ 3 o
o [BOMOAOY 4 o
ADDRESS L ROMIAOY s -
DECODE RAMADY &
VEAMADYT 11
8y 12
VIDED
CONTADL - |
| ALS0S
D
I wock | a3 ua Al
:: CLOCK | " zua_s
| AND .
AESET | -
.
=
INTERRURT
CIRCUIT —-—l T7o5T o ALS20
VIOSLT 0] ysey 8
o i1
FEISLT o hLses
INTRDY 8| us a8

Figure 4-127: Ready Circuit Functional Test (Part C)

4-345

Ready Circuit

Keystroke Functional Test (Part D)

CONNECTION TABLE

RESPONSE TABLE #1

RESPONSE TABLE #2

4-346

Ready Circuit

BOZ2BE |

MICROPROCESSOR J

+5Y

3,50 AEADY b

7 | REDVEN

g-c SRDY -
gﬂc SRDYEN aio
U1

BUS aLaTan
BUFFEA - —
TIMING . wEAv)
|
|
HOM - |
b | 45V 1,
| SFAAEL 2
SPAREZ 3
| | AOMOREY 4
L AOMiRoY 5| Y8 8
, ADDRESS L B
| OECODE AAMEOT B
{ VEAUADY 41
S - R
i VIDED)
| CONTROL o 2
S | L5164
*5V A NE
: i1 2 |z gz, 4 _NC
HEas - TR oac o NG
AND - CLK) ao [6 NG
RESET SE [11 3WAITS
o a5 NE
G HC
Ui7
INTERRUPT
CIRCUTT e TrseT ese
1
| a

INTROY

Figure 4-128: Ready Circuit Functional Test (Part D)

4-347

Ready Circuit

Programmed Functional Test 4.14.6.

4-348

The tst_ready program is the programmed functional test for the
Ready Circuit functional block. This program checks the Ready
circuit using the gfi test command. If the gfi test command fails,
the abort_test program is executed and GFI troubleshooting
begins. (See the Bus Buffer functional block for a discussion of
the abort_test program).

The gfi test command executes a number of stimulus programs.
The ready 1, ready 2, ready 3, and ready 4 stimulus programs
overdrive nodes in order to break the feedback loop in the Ready
circuit. These programs will ask the operator to use a second
clip on a second component so that the circuit can be overdriven.

program tst ready

! FUNCTIONAL TEST of the READY functional block. i
1 1
This program tests the READY functional block of the Demo/Trainer. t
The gfi test command and I/0 module are used to perform the test. The !
ready test involves overdriving components to break the feedback loop !
in the ready partition. Two I/0 module clips are required; one for !
measurement and one for stimulus (overdriving). !
1

1

1

1

1

1
1
1
1
1
1
! TEST PROGRAMS CALLED:

i abort_test (ref-pin) If gfi has an accusation
! display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! program (GFI begins trouble- !
! shooting). !
1

if (gfi status "Ul-4") = "untested" then
print "\nl\nlTESTING READY CIRCUIT"

podsetup 'enable ~ready' "off"
podsetup ‘'report forcing' "off"

if (gfi status "Ul-4") = "untested" then gfi test "Ul-4"
if (gfi status "Ul-4") = "bad" or (gfi status *"Ul-2") = "bad" or
{gfi status "Ul~-3") = "bad" then

abort_test ("Ul-4")

else
print "READY CIRCUIT PASSES"

end if

end if
end program

Ready Circuit

Stimulus Programs and Responses 4.14.7.

Figure 4-129 is the stimulus program planning diagram for the
Ready Circuit functional block. The ready 1, ready 2,
ready_3, and ready_4 stimulus programs use one clip For
measurement and a second clip to overdrive the Ready circuit in
order to break the feedback loop in this circuit. ready 5 and
ready 6 provide stimulus to measure the operation of the I/O
ready generator, U17. These two stimulus programs count how
many 8 Mhz clocks occur during the wait state generated by
U17.

The steps to break the Ready feedback loop to diagnose a fault
are shown below:

1. Overdrive inputs U4-4 and U4-5. Then measure
outputs U4-6 and Ul-4. The 82284 chip (U1)
synchronizes the Ready output (U4-6) to the
microprocessor read/write cycles. This requires the
ready 1 stimulus program to output the level, allow
enough time for the signal to get synchronized, then
check the level at the output U1-4.

2. Finish breaking the Ready signal feedback loop by
overdriving inputs U4-12 and U4-13, then measure
the outputs U4-11, U5-3, and U4-6. In order to
measure US5-3 and U4-6, the other inputs U5-1 and
U4-5 must be held high so the signals will flow
through the AND gates. The ready 4 stimulus
program performs this step.

3. Hold the node with output source U4-11 high. This
allows signals from U6 to flow through U5-3 to U4-
6. At the same time, holding U4-11 high causes
output U17-11 to stabilize at a high state, allowing
signals from US56 to ripple through U5-6 to U4-6.
Now use the pod to exercise the Ready Circuit inputs
that are driven by the Address Decode functional
block. The ready 2 stimulus program performs this
sequence for all components that can be forced to use
zero wait states. It does this by disabling U17 (all

4-349

Ready Circuit

components except RAM and Video RAM). Since
the pod has turned ~READY ENABLE OFF, the pod
generates a sync pulse with zero wait states.
Because the RAM and Video RAM return wait states,
taking signature measurements on RAM and Video
RAM will turn out to be unstable. To solve this
problem, ready 2 accesses all components except
RAM and Video RAM. Then the ready 3 stimulus
program performs a similar operation, but exercises
only RAM and Video RAM. ready 3 responses are
characterized by asynchronous level history and
transition counts to allow the RAM and Video RAM
wait state signals to be measured.

4. Measure the I/O component wait state generator,
U17. The Clear input at U17-9 is toggled low. At
the same time a measurement using external Clock
(and Start) is made. The External Clock line is
connected to the § MHz clock CLK and the Start line
is connected to the node which includes U17-9. A
Stop Count is set and transition counts and level
history are measured. The ready 6 stimulus
program uses a Stop Count of four clocks and the
response is expected to be low level history and zero
transitions, indicating that the wait state output was
low for at least four clocks. The ready 5 stimulus
program uses a Stop Count of six clocks. In this
case, a response of high and low level history is
expected, and a transition count of 1 is expected.
These results indicate that the wait state finished
within six clock cycles.

Advice for Making GFI Work in the Presence of Ready Faults

When a Ready fault exists, a forcing-line fault condition will be
generated. However, the pod must ignore the Ready
forcing-line fault condition so that the stimulus program will
execute completely. Otherwise, a fault condition would be
generated and GFI would terminate. To turn this report off, a
SETUP REPORT FORCING ~READY OFF command can be

4-350

Ready Circuit

performed. When this is done, the pod will continue to respond
to the Ready signal, but will not generate a fault message. If the
Ready signal is stuck high, the pod will cause the 9100A/9105A
to generate a pod timeout fault condition. To cure this, a SETUP
ENABLE ~READY OFF command is performed. At this point,
GFI will work properly and Ready problems can be isolated to
the failing component or node.

More generally, GFI works best if every stimulus program turns
all reporting conditions off. In addition, those stimulus
programs that create activity in the kernel area, may need to turn
off Enable Ready. All Demo/Trainer UUT stimulus programs
related to the address bus, data bus, control signals, address
decoding, interrupts, and ready circuitry turn the Ready Enable
off at the beginning of the stimulus program and the turn Ready
Enable back on at the end of the program.

One more note: the 80286 microprocessor uses a separate bus
controller that has no feedback lines to the microprocessor.
When the pod disables the Ready input and performs zero wait
state operations regardless of the Ready input, the bus controller
can get out of synchronization from the pod and may get
confused. When this happens, an enabled line timeout fault
condition is generated. The solution is to provide a handler for
that fault condition in each stimulus program that enables and
disables Ready. The handler for the fault condition should call a
program which performs a recovery procedure. The recovery
procedure depends on the UUT. Usually, forcing the Ready
line active or performing a Reset will recover synchronization.
Or, by disabling Ready and then performing a read or write in
memory space followed by enabling Ready may recover
synchronization of the 80286 pod and the bus controller. Most
other microprocessors do not have this problem.

Ready Circuit

Stimulus Program Planning

PROGRAM: READY.3

OVERDRIVES THE NODE AT U4-11 AND EXERCISES
THE READY RETURN LINES VRAM AND VRAMRDY

MEASUREMENT AT:

4-352

Ready Circuit

BUS ALATCH BO288
BUFFER MICROPROCESSOR
OYNAMIC

RAM - N
TIMING T

L
ROM | e) ;
| B — 45V 1 —:”
J SPAFEL @ by il
SFARED 3 s —34 SRO s
] AOMOREY | 4 o J7_q SF!DYEN_ M
1
ADDRESS ACMIADY 5| us U »
OECODE AAMADY 5
VEAMRBOY 41
o +5Y iz SEOY
VIDED | s ALS00 rcon
=] ua
I
12»‘7308 ey L5164) . I -
|
B 2 _-t;; g; e
CLOCK B e i
AND o} OLK oo [5_me s
RESET .
— S <
INTERRUPT
CIRCUIT T7EECT
] VIDSLT
| PPISLT

INTROY

Figure 4-129: Ready Circuit Stimulus Program Planning

4-353

Ready Circuit

program ready 1

Trrprprtrrrrr Rt T T ITIRrTT T T T LRI r I IR R R I I I IR RTITIIIIIITIIIIIIIIIILIIGLYL

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !

! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault f
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover (} program is executed to !

1

1

resynchronize the bus controller and the ped.

recover () The 80286 microprocessor has al!
bus controller that is totally!
separate from the pod. 1In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:
recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device

1
!

1

t

1

1

1

!

1

1

i

e

1

1

1

1

1

!

1

! 1
! TEST PROGRAMS CALLED: !
1

1

t

1

1

!

1

1

1

1

1

1

1

1

1

1

1

1

! stimulus dev Stimulus device (overdrives)

declare global numeric recover_ times

(continued on the next page)

Figure 4-130: Stimulus Program (ready_1)

4-354

Ready Circuit

handle pod_timeout_ enabled line
recover ()

end handle

handle pod_timeout recovered
recover (}

end handle

handle pod timout neo_clk

end handle

recover times = 0
! Let GFI determine measurement device
if {(gfi control) = "yes" then

measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print " {Chose Ul, U4, Ul4 or Ul5)"
measure_ref = "" \ input measure ref

if measure ref <> "Ul4" then
measure_dev = clip ref measure ref

else
probe ref "Ul4-63" \ measure dev = "/probe"

end if
end if

! Determine stimulus device

if measure ref = "U4" then
stimulus_dev = measure dev

else
print "\O7\1B{2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus dev = clip ref "U4"
print "\1B{20h"

end if

print "Stimulus Program READY 1"

(continued on the next page)

Figure 4-130: Stimulus Program (ready_1) - continued

4-355

Ready Circuit

! Setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'standby function off!
podsetup 'report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' "“off"
podsetup 'report address' "off"
podsetup ‘report data' *"off"
podsetup ‘report control' "off"
reset device measure dev

reset device stimulus dev

sync device measure_dev, mode "int"

! Perform Stimulus

‘ arm device measure dev
Zg writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level "1", mode "latch"

strobeclock device measure dev
writepin device "U4", pin 4, level "0", mode "latch"
writepin device "U4", pin 5, level "1", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level *1", mode "latch”
strobeclock device measure dev
writepin device "U4", pin 2, level "1", mode "latch"
writepin device "U4", pin 5, level "0", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1%, mode *"latch"
writepin device "U4", pin 5, level "1", mode "latch"
strobeclock device measure_dev

readout device measure dev

clearoutputs device stimulus dev
podsetup 'standby function on!
podsetup ‘enable ~ready' "on"

end program

Figure 4-130: Stimulus Program (ready_1) - continued

4-356

Ready Circuit

O ' STIMULUS PROGRAM NAME: READY 1

DESCRIPTION: SIZE: 94 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U4-6 I/0 MODULE 0015 10 TRANS
Ul-4 PROBE 0015 10 TRANS
Ul-4 I/0 MODULE 0015 10 TRANS

Figure 4-131: Response File (ready 1)

4-357

Ready Circuit

program ready 2

Trrtrppeetrrr bR R tE LR LILI I LIGPRELCLILIIOIOLITIGLPIEEIIEIIO RIS RITRITLIIIOLIISLIGPITTITLIIIIOLIOIGLIITIEILILILIILIILIYL

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
H
This stimulus program is cne of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the ped. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

TEST PROGRAMS CALLED: 1
recover () The 80286 microprocessor has a!l
bus controller that is totally!

separate from the pod. 1In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controeller. 1

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:

recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device
stimulus_dev Stimulus device (overdrives)

declare global numeric recover times

(continued on the next page)

Figure 4-132: Stimulus Program (ready_2)

4-358

Ready Circuit

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_recovered
recover (}

end handle

handle pod timout no clk

end handle

recover_times = 0

! Let GFI determine measurement device

if (gfi control) “yes" then
measure _dev = gfi device
measure ref = gfi ref
else
print "Enter reference name of part to measure:"

print *

{Chose U1, U4, U5, U6, U56 or U17)"

measure_ref
measure_dev

\ input measure_ref
clip ref measure_ref

end if

! Determine stimulus device

if measure_ref = "Ul" then
print *\07\1B[2J\1B[201\1B[3;1f
stimulus_dev clip ref "U4"
print "\1B{20h"
else
stimulus dev
end if
print "Stimulus Program READY 2"

USING \1B[7mSECOND\1B[Om CLIP."

measure_dev

! Setup measurement device.
podsetup 'enable ~ready' "off"
podsetup ‘report power' "off"
podsetup 'report forcing' "off"
podsetup 'report intr* "“off"
podsetup ‘report address' "off”
podsetup 'report data®' "off"
podsetup 'report control' "off"
io_byte = getspace space "i/o", size "byte"

mem word = getspace space "memory", size "word®

(continued on the next page)

Figure 4-132: Stimulus Program (ready_2) - continued

4-359

Ready Circuit

reset device measure dev

reset device stimulus dev

sync device measure dev, mode “pod"

sync device "/pod", mode "data"

old cal = getoffset device measure_dev

setoffset device measure dev, offset (1000000 - 56)

if measure ref = "US" then
writepin device "U5S", pin 2, level "1", mode "latch"
writepin device "U5", pin 4, level "1%, mode "latch"

else if measure ref = "U4" or measure ref = "UL" then
writepin device "U4", pin 11, level "1", mode “latch”
end if

! Stimulate ICs and capture response.

arm device measure_dev ! Start response capture.
setspace (mem word)
read addr $30000 ! IPOLL
read addr $40000 ! SPARE1
read addr $50000 ! SPARE2
read addr $E000O ! ROMO
read addr $F0000 I ROM1
setspace (io_byte)
read addr O ! VIDSLT
read addr $2000 ! I/08LT
read addr $4000 ! PPISLT

1

readout device measure dev End response capture.

if stimulus dev <> "/probe" then clearoutputs device stimulus dev
setoffset device measure_dev, offset old cal

pedsetup ‘enable ~ready' "“on"

end program

Figure 4-132: Stimulus Program (ready_2) - continued

4-360

Ready Circuit

O STIMULUS PROGRAM NAME: READY 2

DESCRIPTICN: SIZ2E: 143 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U4-6 1/0 MODULE 0000 10 TRANS
U4-8 PROBE CO7E 10 TRANS
U4-8 1/0 MODULE O007E 190 TRANS
U5-3 I/0 MODULE 0086 10 TRANS
Us-6 I/0 MODULE 0078 10 TRANS
U56-8 PRCBE 0086 10 TRANS
US6-8 I/0 MODULE 0086 10 TRANS
U6-8 1/0 MODULE 0078 190 TRANS

Figure 4-133: Response File (ready 2)

Ready Circuit

program ready 3

STIMULUS PROGRAM toggles ready circuit inputs which generate
wait states.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
t
1
1
1

1
1
1
i
1
1
i
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
1

1

i

1

1

1

1

1

1

1

or without the ready circuit working properly. Because of this, all
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re—enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus contreller out of synchronization with the pod. Two fault 1
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to
resynchronize the bus controller and the pod.

1

1

1

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALLED: !
! recover () The 80286 microprocessor has al!
! bus controller that is totally!
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
H ler. The recover program

! resynchronizes the pod and the!
! bus controller. 1
1

1

1

1

1

1

1

1

1

1

!

GRAPHICS PROGRAMS CALIED:
{none}

recover times Reset to Zero

Local Variables Modified:
measure_dev Measurement device

1

1

1

1

Global Varilables Modified: !
1

1

1

1

stimulus_dev Stimulus device (overdrives) !

TrrrrrrrrrrrERLLI LI LI LI IO LI I I LI LI LIOLIGLRIGRICTI LTI I LI I I TIPSR LI LI TITITIIITII IERTI I IPIITRRLIILIILIIIIILILILIILILILL

! Main Declarations

declare global numeric recover times

(continued on the next page)

Figure 4-134: Stimulus Program (ready_3)

4-362

Ready Circuit

TrrrrrrrrbIbIbILLLERLLILILILILILLIIbOELILLIOILILIG LI IOLIIOLI R RIEILIIII LI PO IOIIOLI RIS LIEITREILIOIOIIIII I LIEILILIULIILIY

! FAULT HANDLERS:
AR N N N R N R R N R S R RN N S RN S R NN RS R S RSB

handle pod_timecut_enabled line
recover (}

end handle

handle pod timeout recovered
recover ()

end handle

handle pod_timout no_clk

end handle

recover_times = 0
! Let GFI determine measurement device

if (gfi control) = "yes" then
measure _dev = gfi device
measure_ref = gfi ref

else
print “Enter reference name of part to measure:"
print " {Chose Ul, U4, U5 or UG)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure ref

end if

! Determine stimulus device

if measure ref = "Ul" then
print "\07\1B[23\1B[201\1B{3;1f USING \1B[7mSECOND\1B[Om CLIP."
stimulus dev = clip ref "U4"
print "\1B[20h"
else
stimulus dev = measure dev

end if
print "Stimulus Program READY 3"

(continued on the next page)

Figure 4-134: Stimulus Program (ready_3) - continued

4-363

Ready Circuit

! Setup measurement device.

podsetup ‘'enable ~ready' "“off*

podsetup 'standby function off!

podsetup ‘report power' “off"

podsetup 'report forcing' "off*

podsetup 'report intr' "“off"

podsetup 'report address' "off"

podsetup ‘report data' "off"

poedsetup 'report control* “off"

io_byte = getspace space "i/o", size "byte"

mem word = getspace space "memory", size "word”
reset device measure dev

reset device stimulus dev

sync device measure dev, mode “pod"

sync device "/pod", mode "data"

old cal = getoffset device measure dev
setoffset device measure dev, offset (1000000 - 56)

if measure ref = "US" then
writepin device "U5", pin 2, level "1", mode "latch"
writepin device "U5", pin 4, level "1", mode "latch"
else if measure ref = "U4" or measure ref = "UL" then
writepin device "U4", pin 11, level "1", mode "latch"
end if

! Stimulate ICs and capture response.

arm device measure dev ! Start response capture.
setspace (mem word)
read addr O ! RAMO
read addr $10000 ! RAM1
write addr $20000, data O ! VRAM (write only)
1

readout device measure_dev ! End response capture.

clearoutputs device stimulus_dev

setoffset device measure dev, offset old cal
podsetup 'standby function on'

podsetup 'enable ~ready' "on®

end program

Figure 4-134: Stimulus Program (ready_3) - continued

4-364

Ready Circuit

STIMULUS PROGRAM NAME: READY 3

DESCRIPTION:

Node Learned
Signal Src With

U4-6 I/0 MOCDULE
Us-3 I/0 MCDULE
U6-8 I/0 MCDULE

Figure 4-135: Response File (ready_3)

SIG

SIZE:
Response Data
Async Clk Counter
IVL IVL Mode Counter Range
10 TRANS 3
10 TRANS 3
10 TRANS 3

112 BYTES

Priority
Pin

4-365

Ready Circuit

program ready 4

STIMULUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the ped, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !
1

TEST PROGRAMS CALLED: !
recover {) The 80286 microprocessor has al
bus controller that is totally!

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. 1

GRAPHICS PROGRAMS CALLED:
(none)

1
i
t
1
Global Variables Modified: !
recover_times Reset to Zero !
1
1
1
1
i

Local Variables Modified:
measure_dev Measurement device
stimulus dev Stimulus device (overdrives)

IIIIIIIIIIIVTIIIIIlllllllllllllllllltllllll!llllllil!lllllll!!lllllllll

Main Declarations

trrrrrrrrbLLLLLOLLOILCLILCORLLLIOLLILOLI R RRLIOLILIOLI IR R RLIOLILII IO LPITILRILIILIPIOIOG LI RLEILILIIILIOLIEILIIORLTIEILILIILIILIILY]

declare global numeric recover times

(continued on the next page)

Figure 4-136: Stimulus Program (ready_4)

4-366

Ready Circuit

{ FAULT HANDLERS:

handle pod_timeout_enabled line
recover (}

end handle

handle pod_timeout_recovered
recover ()

end handle

handle pod_timout no_clk

end handle

recover times = 0
i Let GFI determine measurement device

if (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print * (Chose U4, U5 or Ui7)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure_ref

end if

! Determine stimulus device

if measure ref = "U4" then
print "\O7\1B[2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP.*
stimulus_dev = clip ref "U45"

else if measure ref = "U5" then
print "\07\1B[2J\1B[201\1B{3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus_dev = clip ref "Ul17"

else if measure ref = "U17" then
print "\O7\1B[2J\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Om CLIP."

stimulus dev = clip ref "U4"
end if
print "\1B[20h*
print "Stimulus Program READY 4"

(continued on the next page)

Figure 4-136: Stimulus Program (ready_4) - continued

Ready Circuit

! Setup measurement device.

podsetup ‘enable

~ready*® "off"

podsetup ‘report power' "“off"
podsetup ‘report forcing' "off*®

podsetup ‘report intr* "off"
podsetup 'report address' "off*
podsetup 'report data' "off*
podsetup ‘report control' “off"

reset device measure dev
reset device stimulus dev
sync device measure dev, mode "int"
sync device stimulus dev, mode "int"

if measure_ref = "U4" then
storepatt device "U4", pin 12, patt "10111"
storepatt device "U4", pirn 13, patt *11101"
storepatt device "U45", pin 6, patt "00000"
storepatt device "U45%, pin 3, patt "00000"
else if measure ref = "US5" then
storepatt device "U5%, pin 1, patt "11111"
storepatt device "U17", pin 9, patt "10101"

else if measure ref = "UL7" then
storepatt device "U4", pin 12, patt *10111"
storepatt device "U4", pin 13, patt "11101"
end if

{ Provide stimulus to UUT using I/0 module to overdrive.

arm device measure dev

if measure ref = "U4" then

writepatt device "U45,U4", mode "pulse"
else if measure ref = "U5" then

writepatt device "U17,U5", mode "pulse"
else if measure_ref = "Ul7" then

writepatt device "U4", mode "pulse"
end if

readout device measure dev

podsetup ‘enable ~ready' "on*
end program

Figure 4-136: Stimulus Program (ready_4) - continued

4-368

Ready Circuit

STIMULUS PROGRAM NAME: READY 4

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With SIG ILVL IVL Mode Counter Range
U4-11 I/0 MODULE 0015 10 TRANS
Us5-3 I/0 MODULE OOOA 10 TRANS

Figure 4-137: Response File (ready_4)

78 BYTES

Priority
Pin

Ready Circuit

program ready 5

STIMULUS PROGRAM characterizes the ready circuit.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !

1 in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
1

1

1

1

1

1

1

H

1

! the stimulus programs in the kernel area must disable the READY input

! to the pod, then perform the stimulus, then re-enable the READY input

! to the pod. The 80286 microprocessor has a separate bus controller;

! for this reason, disabling ready and performing stimulus can get the

! bus controller out of synchronization with the pod. Two fault
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to
resynchronize the bus controller and the pod.

1

1

1

1

1

1

1

1

1

1

1

1

!

1

1

1

1

1

! H
! TEST PROGRAMS CALLED: !
! recover () The 80286 microprocessor has a!
! bus controller that is totally!
! separate from the pod. In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program

! resynchronizes the pod and the!
! bus controller. !
1

1

1

1

i

1

b

i

t

1

1

1

1

1

1

1

1

1

!

1

check meas (device, start, stop, clock, enable)
Checks to see if the measure-
ment is complete using the
TL/1 checkstatus command. If !
the measurement times out thent
redisplay connect locations. !

f GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
done returned from check_meas (}

Global Variables Modified:
recover_times Reset to Zero

Local Variables Modified:
measure_dev Measurement device
stimulus dev Stimulus device (overdrives)

(continued on the next page)

Figure 4-138: Stimulus Program (ready._5)

5‘—4-370

Ready Circuit

declare global numeric recover times
declare numeric done = 0

handle pod_timeout enabled line
recover ()

end handle

handle pod_timeout_ recovered
recover ()

end handle

! Main part of STIMULUS PROGRAM !
I R SR NN R N N R AR R R R R R R RN |

recover times = 0
! Let GFI determine the measurement device.

if {(gfi control) = "yes" then
measure dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print » (Chose U5 or U17)}"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure ref

end if

print "Stimulus Program READY 5"

! Set addressing mode and setup measurement device.

podsetup 'enable ~ready®' "“off"
podsetup 'standby function off!'
podsetup ‘report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' "off"

podsetup ‘report address' "off”
podsetup ‘report data' "off"

podsetup ‘'report control' "“off"
setspace(getspace{ *i/o", "byte" }}
reset device measure dev

sync device measure_dev, mode "ext"
enable device measure dev, mode "high"
edge device measure dev, start "+", stop "count", clock "-"
stopcount device measure dev, count 7

(continued on the next page)

Figure 4-138: Stimulus Program (ready 5) - continued

Ready Circuit

! Prompt user to connect external lines.

1 if measure ref = "Ul7" then
. connect device measure dev, start "U4-11", clock "U1-10", common "“gnd"
else
connect device measure dev, start "Ul7-%", clock "Ul-10", common "gnd"
end if

! External lines determine measurement.

loop until done = 1
arm device measure dev
read addr 0
done = check_meas (measure_dev, "U4-11", "**, "Ul-10", "*")
readout device measure dev
end loop

clearoutputs device measure dev

podsetup ‘standby function on'

podsetup ‘enable ~ready' "on*
end program

Figure 4-138: Stimulus Program (ready 5) - continued

4-372

Ready Circuit

‘ STIMULUS PROGRAM NAME: READY 5

DESCRIPTION: SIZE: 69 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG VL IVL Mode Counter Range Pin
Ul7-11 I/0 MCDULE 10 TRANS 1

Figure 4-139: Response File (ready_5)

4-373

Ready Circuit

program ready 6

STIMULUS PROGRAM to wiggle all address lines from the uP.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1 1
This stimulus program is one of the programs which creates activity t
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !

1

1

1

1

i

1

1

1

1

! the stimulus programs in the kernel area must disable the READY input !

! to the pod, then perform the stimulus, then re—enable the READY input !

! to the pod. The 80286 microprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to
resynchronize the bus controller and the pod.

recover 4] The 80286 microprocessor has a!l
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALIED:
{none}

1
i
i
1
Global Variables Modified: !
recover times Reset to Zero !
1
i
t
1
1

1
!

1

1

1

1

1

1

1

1

1

1

!

1

1

I

1

1

! !
! TEST PROGRAMS CALLED: !
1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

! Local Variables Modified:

! measure_dev Measurement device

1 stimulus dev Stimulus device {overdrives)
i

(continued on the next page)

Figure 4-140: Stimulus Program (ready_6)

Ready Circuit

declare global numeric recover_ times
declare numeric done = 0

handle pod timeout enabled line
recover (}

end handle

handle pod_timeout_ recovered
recover {)

end handle

trrrprrrrrrrrrn LI IELLLLOLILIIIOELLILILILIOLIRILIOIOLILIOLIIITILIIILIIIRIILTIGRITITIIIIIIILTIELt

! Main part of STIMULUS PROGRAM !
AR RN NS R NN R R R N N R N A SR RN R R R A NN

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:”
print " (Chose U5 or U17)"
measure_ref = "" \ input measure ref
measure_dev = clip ref measure_ref

end if

print "Stimulus Program READY 6"

! Set addressing mode and setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'standby function off*
podsetup 'report power' "off*

podsetup 'report forcing' "off"
podsetup 'report intr' “off"

podsetup ‘report address' *"off"
podsetup 'report data' "off"

podsetup ‘'report control!' "“off”
setspace(getspace("i/o", "byte" })
reset device measure dev

sync device measure dev, mode “ext™
enable device measure dev, mode "high"
edge device measure dev, start "+", stop "count", clock "-"
stopcount device measure dev, count 4

(continued on the next page)

Figure 4-140: Stimulus Program (ready_6) - continued

4-375

Ready Circuit

! Prompt user to connect external lines.

if measure ref = "UL7" then

connect device measure dev, start "U4-11", clock "U1-10", common "gnd"
else

connect device measure dev, start "Ul7-9", clock "Ul-10", common "gnd"
end if

{ External lines determine measurement.

loop until done =1
arm device measure_dev
read addr O
done = check meas (measure_dev, "U4-11%, "*n", #yl-10", =+1)
readout device measure dev
end loop

clearoutputs device measure dev
podsetup ‘standby function on'
podsetup ‘'enable ~ready‘' "on"

end program

Figure 4-140: Stimulus Program (ready_6) - continued

4-376

Ready Circuit

O STIMULUS PROGRAM NAME: READY 6

DESCRIPTION: SIZE: 70 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
Ul7-11 1/0 MODULE 10 0 TRANS 0

Figure 4-141: Response File (ready_6)

4-377

Ready Circuit

Summary of Complete Solution for
Ready Circuit 4.14.8.

The entire set of programs and files needed to test and GFI
troubleshoot the Ready Circuit functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
(Complete File Set for Ready Circuit)
Programs (PROGRAM):
TST_READY Functional Test Section 4.14.5
READY_1 Stimulus Program Figure 4-130
READY_ 2 Stimulus Program Figure 4-132
READY_3 Stimulus Program Figure 4-134
READY_4 Stimulus Program Figure 4-136
READY_5 Stimulus Program Figure 4-138
READY_6 Stimulus Program Figure 4-140
Stimulus Program Responses (RESPONSE):
READY_1 Figure 4-131
READY_2 Figure 4-133
READY_3 Figure 4-135
READY_4 Figure 4-137
READY_5 Figure 4-139
READY_6 Figure 4-141
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-378

Other Functional Blocks and Circuits

OTHER FUNCTIONAL BLOCKS AND CIRCUITS 4.15.

The 9100A/9105A provides the capability to handle a number of
special circuits or situations. Among these are watchdog timers
forcing lines, feedback loops, and in-circuit component testing.

Watchdog Timers 4.15.1.

Watchdog timers usually interfere with testing and
troubleshooting. If your UUT has a watchdog timer, your test
procedure or program must disable it before performing tests.

Many watchdog timers initiate a master reset when they detect
incorrect activity. Others may use a high-priority interrupt line
to reset the system.

Whenever possible, physically disable the watchdog timer with a
jumper or switch provided for that purpose. If the watchdog
timer cannot be disabled at the UUT, the 9100A/9105A may be
able to ignore it with the SETUP POD REPORT FORCING
SIGNAL ACTIVE OFF keypad command, or disable it with a
command like SETUP POD ENABLE READY ON/OFF. Be
very careful, however, when doing this. Read the precautions
about these commands in Section 4.15.2, "Forcing Lines."

Forcing Lines 4.15.2.

In some situations, forcing lines must be disabled (disconnected
from the pod microprocessor) during a test. You can do this
with the SETUP POD ENABLE READY ON/OFF keypad
command ("READY" is a pod-dependent choice; some pods
may call this line by a different name).

Exercise care whenever you disable a forcing line. Write or read
commands to circuits that generate wait states through a Ready
line may become unpredictable after the Ready line is disabled at
the pod.

4-379

Other Functional Blocks and Circuits

In addition to disabling forcing lines, you can also ignore them.
The SETUP POD REPORT FORCING SIGNAL ACTIVE OFF
keypad command will prevent the reporting of forcing lines. In
this mode, the pod behaves normally but forcing conditions are
not reported by the pod to the 9100A/9105A.

Exercise care with this mode also. The pod's hardware
performance is not affected and the pod will continue reacting to
the forcing line. If the UUT generates a permanent wait state
using a forcing line, the pod will halt and the system will display
a timeout message. Other fault-indicating signals on your UUT
will also be ignored if the forcing line is disabled. Be sure that
] your UUT hardware is not affected by the same forcing line.

Breaking Feedback Loops 4.15.3.

| Microprocessor-based systems often have several feedback
i loops. The microprocessor and the components tied to the data
q and address buses form a large feedback loop. Most of the

loops in the system will be broken when the microprocessor is
replaced by the pod, because the pod can selectively ignore or
l report conditions of status and forcing lines. However, there

may be additional loops which are not broken by the pod.

Figure 4-125 shows a feedback loop in the Ready functional
block of the Demo/Trainer UUT. The READY output (U1-4) is
fed back as an input at U4-12.

To test a functional block that contains a feedback loop, drive all
of its inputs, including the inputs connected to outputs that form
the feedback loop, and measure the outputs. Use the I/O module
to overdrive inputs while measuring signature, level, and count
at the outputs.

Visual and Acoustic Interfaces 4.15.4.

Some circuits, such as LEDs and beepers, have both electrical
characteristics and visual or acoustic characteristics . In general,
stimulus programs should ignore the visual or acoustic

4-380

Other Functional Blocks and Circuits

characteristics and measure only the electrical characteristics .
The functional tests should prompt the test operator to verify the
visual or acoustical characteristics .

If the functional test fails, use the gfi test command. If gfi test
fails, start GFI troubleshooting. If the functional test fails and
gfi test passes, the part is bad, since the part operates incorrectly
but the electrical signals at the part are good.

In the case of the Parallel I/O functional block on the
Demo/Trainer UUT, the functional test includes a prompt to the
operator to verify the correct display on the LEDs. If the LEDs
fail, the Parallel I/O functional test should perform a gfi test,
which will run the stimulus programs and check the electrical
properties. If gfi test passes (when the Parallel I/O functional
test failed), it means that the electrical characteristics are good
but the display is bad. The LEDs are bad and the operator
should be prompted to replace them. If the gfi rest fails, GFI
troubleshooting can begin at the pin where the gfi fest failed.

In-Circuit Component Tests 4.155.

If you wish, you can write TL/1 programs to test individual
components rather than using the GFI to do so. These in-circuit
component tests use a sequence of ones and zeroes defined with
the TL/1 storepatt command and executed by the TL/1 writepart
command to overdrive the inputs of the component to be tested
while measuring the signatures or level histories of its outputs.
A test operator runs these tests by using the EXEC key to run
the required program.

4-381

Other Functional Blocks and Circuits

(This page is intentionally blank.)

J 4-382

Section 5

UUT Go/No-Go
Functional Tests

PROGRAMMED GO/NO-GO FUNCTIONAL
TESTING 5.1.

The UUT go/no-go test is the third of four modular levels in
programming the 9100A, as shown in Figure 5-1. In this third
level, the go/no-go test determines whether the UUT is good
(passes) or bad (fails). The go/no-go test combines built-in
functional test commands with functional tests designed by the
programmer.

The go/no-go test is simple because it builds on the tests of
functional blocks. It determines only whether the entire UUT is
good or bad. It does not determine which functional block is
causing a failure.

CREATING A PROGRAMMED GO/NO-GO
FUNCTIONAL TEST 5.2.

Suppose a UUT has 14 functional blocks and a functional test is
defined for each of them. One way to create a go/no-go test is to
perform all 14 functional tests. Some blocks, however, can be
tested indirectly by testing other blocks. For example, the bus
buffer is assumed to be good if the ROM, RAM, and other
blocks pass their tests. Therefore, a second way to create the
g0/no-go test is to perform functional tests only on functional
blocks which cannot be tested indirectly by testing other blocks.

5-1

5-2

Level 1 I

« Stimulus Programs for Nodes

«|earned Node Responses
from Known-Good UUT

- Node List and Reference
Designator List (Both Optional)

Level 2 I

Functional Tests of
Entire Functional Blocks

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 5-1: UUT Go/No-Go Functional Testing (Level 3)

Figure 5-2 shows the steps used to reach a go/no-go status:
decision. Care must be taken to ensure that your go/no-go test
really does test the UUT for all possible faults.

Figure 5-3 shows the structure of a go/no-go functional test for
the Demo/Trainer UUT. For this UUT, only six functional
blocks need to be tested for the go/no-go functional test of the
UUT: Microprocessor Bus, RAM, ROM, Parallel I/O, Serial
I/0O, and Video. The microprocessor bus test is run first because
it is built-in, fast, and provides excellent diagnostic information.
A failure on the microprocessor bus will cause most other
circuits to fail, so it is most efficient to check this functional
block first.

In the Demo/Trainer UUT, the following functional blocks are
tested indirectly by the go/no-go test:

Clock and Reset
Ready Circuit
Interrupt Circuit

Bus Buffer

Dynamic RAM Timing
Address Decode
Video Control

Video RAM

Figure 5-4 is a listing of the go/no-go functional test program for
the Demo/Trainer UUT. It calls the functional test for each of
the functional blocks which must be tested directly for the UUT
go/no-go functional test to be complete. The remaining
functional blocks are tested indirectly; if they fail, one of the six
blocks that is tested by the go/no-go test will fail also.

EVALUATING TEST EFFECTIVENESS 5.3.

The purpose of the go/no-go test is to determine whether the
UUT is good or bad. Two measures are frequently used to
evaluate how well a go/no-go functional test performs: node
activity and fault coverage. Node activity is important because

Select a Functional
Block Which Cannot
» be Tested Indirectly
by Testing Another
Functional Block

A

Execute the Functional
Test for the Functional
Block

Fault
Message?

Any Functional
Blocks Not Yet
Tested Directly
or Indirectly?

Yes

No

3
(UUT Passes) (UUT Fails)

Figure 5-2: Go/No-Go Test Sequence

Test Microprocessor Bus

Test RAM

Test ROM

Test Parallel /O

Test Serial I/O

Test Video

Figure 5-3: Demo/Trainer UUT Go/No-Go Test

program go_nogo

The Go/No-Go program is the highest level of the functional testing
and fault handlers. The purpose of the Go/No-Go test is to determine
whether the UUT is good or bad. This program executes six programs
which test the six major functional blocks (Microprocessor Bus, ROM,
RAM, Parallel I/O, Serial I/O, and Video functional blocks).

By testing the six major functional blocks, the remaining

functional blocks are indirectly tested.

TEST PROGRAMS CALLED:
test bus () Test the microprocessor bus,
buffered bus, and address
select logic.

test_rom ()} Test the ROM functional block
of the Demo/Trainer UUT.

test_ram () Test the RAM functional block
of the Demo/Trainer UUT.

test_pia {) Test the PARALLEL I/O
functional block of the
Demo/Trainer UUT.

test_rs232 () Test the SERIAL I/O
functional block and the
Interrupt Circuit functional
block of the Demo/Trainer UUT.

test video () Test the VIDEO circuit of the
Demo/Trainer UUT.
TRttt eIt rt I I PP I I TILI I I I IR I TIIIIIIIIIIIILILIILITTIL

1
1
t
1
1
1
1
t
1
1
1
1
1
1
i
1
1
1
!
1
1
1
1
H
!
1
1
1
1
i
1

Turn on reporting functions except
interrupt which is tested in the
SERIAL I/O test (test_rs232).

podsetup 'report power' "on"
podsetup 'report intr' "“off"
podsetup 'report address' "“on"
podsetup 'report control' "“on"
podsetup 'report data' "on"
podsetup 'report forcing' “on"

gfi clear ! CLEAR ALL GFI RECOMMENDATIONS
connect clear "“yes" ! Clear all connect information.

execute test bus ()

execute test rom(})

execute test ram()

execute test pila()

execute test rs232()

execute test_video()
end program

Figure 5-4: Go/No-Go Test for Demo/Trainer UUT

5-6

each node on the UUT must be exercised for a thorough
functional test.

However, activity on each node is not a sufficient evaluation of
test effectiveness. In addition, you need to evaluate how well
your test detects faults in the UUT. This is done by injecting
faults (such as stuck lows, stuck highs, intermittent highs, or
intermittent lows) at each node in the UUT while running your
functional test to see if the test fails. The 9100A/9105A probe
(used as a source) provides a convenient tool for this purpose.

Fault coverage is the percentage of faults that will be detected by
the functional test software. It is often measured as the ratio of
the number of nodes where injected faults can be detected by a
test to the total number of nodes in the UUT. This ratio is
usually expressed in percent. If the fault coverage is not high,
you can analyze the pattern of faults that are not detected to
determine additions to your test program to increase the fault
coverage.

EXECUTING UUT SELF-TESTS 5.4.

Self-test routines contained in UUT memory can be executed
from the 9100A/9105A by pressing the RUN UUT key at the
operator's keypad and entering the UUT's starting address of
the routine. These self-test routines can also be run from TL/1
programs by using the runuut command. Self-test routines
typically save their test results in UUT RAM. The
9100A/9105A can later read the appropriate RAM addresses to
get these results.

An I/O module can generate one hardware breakpoint (system
interrupt) upon detection of any user-defined combination of
logic-highs and logic-lows on selected I/O module lines. This
feature may be invoked at the operator's keypad (SET I/O MOD
COMPARE WORD command), or through program execution.
Once set up for a breakpoint, the J/O module continuously
monitors the specified lines while other functions (such as RUN
UUT) are performed. When the breakpoint event occurs, RUN
UUT execution halts. A breakpoint message will interrupt any

5-7

current system activity. If a program is being executed, it may
redirect the breakpoint message through a fault condition
handler, as described in Section 6 of this manual.

A complete functional test for a UUT might begin with the BUS,
RAM, and ROM tests, followed by execution of UUT self-test
routines. By using RUN UUT breakpoints to detect addresses,
data, and other UUT logic levels, the program can integrate the
UUT's self-tests with 9100A/9105A functional tests.

Some pods can also generate UUT breakpoints without using
the I/O module. For these pods, breakpoint-related softkeys
appear when the RUN UUT key is pressed. Consult your pod
manual for these pod-specific breakpoint capabilities, if any.

EXECUTING DOWNLOADED MACHINE CODE 5.5.

5-8

After part of the UUT RAM has been tested and found to be
good, machine code can be downloaded to the tested RAM and
executed. The machine code may be downloaded using a series
of WRITE commands or the WRITE BLOCK command, which
downloads an entire Motorola-format user file.

After the code is downloaded, you can execute it with the RUN
UUT command, specifying the code's starting address.
Although most testing can be done efficiently through the TL/1
test language, downloading machine code is useful when the
code for a test already exists, when the testing must be done at
machine-code speeds, or when a feature not supported by the
pod must be used as part of the test.

The pod's microprocessor bus cycles are actually done at full
UUT speed. The 9100A/9105A, however, is often slower than
the UUT. For example, when the system performs a looping
READ, each bus cycle is at full UUT speed but individual read
operations are not done one immediately after the other.

Q Section 6
Identifying a Faulty
Functional Block

After the go/no-go test determines that a UUT is faulty, the next
step is to identify the failing functional block. Doing so before
starting to troubleshoot will greatly improve troubleshooting
efficiency because troubleshooting can begin closer to the failure
and will take less time to reach the failing node. In addition,
fault detection will be more accurate because the diagnostic test
can check for special types of faults, such as bus contention,
before troubleshooting begins.

Programs that identify faulty functional blocks are called
diagnostic programs. Diagnostic programs, which are a subset
of troubleshooting procedures, build on the UUT go/no-go test,
functional tests of blocks, and stimulus programs. They are the
Iast of the four modular levels in programming the 9100A, as
shown in Figure 6-1. In this fourth programming level, fault
condition handlers and gfi hint commands are added to the UUT
go/no-go test to create a diagnostic program that traps faults and
initiates tests of functional blocks that may be responsible for the
fault, thereby isolating the block that is causing the UUT to fail.
In addition, a failing output of the faulty block is identified as a
starting point for backtracing toward the fault that causes the
block to fail. At that point, GFI troubleshooting (the GFI key
on the operator's keypad) can be used to backtrace to the bad
node or component.

6-2

Level 1

= Stimulus Programs for Nodes

«Learned Node Responses
from Known-Good UUT

»Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

fo the Block'Level

Figure 6-1: Diagnostic Programs (Level 4)

R

STRATEGY OF DIAGNOSTIC PROGRAMS 6.1.

The first step in developing a diagnostic strategy is to draw a
diagram showing the major functional blocks used in the go/no-
go functional test. Next, show all other functional blocks that
provide input to these major functional blocks. Figure 6-2
shows such a diagram for the Demo/Trainer UUT. The figure
shows six sets of functional blocks, one for each major
functional block tested by the go/no-go functional test. The
blocks on the left provide input to the blocks on the right, and
the blocks tested by the go/no-go functional test are on the right
side of each set.

The task of the diagnostic program is to select a failing
functional block for troubleshooting and to generate an
appropriate starting point (or points) where GFI can begin
automated troubleshooting. When a major functional block
fails, you know that one or more outputs of the block are bad.
But it doesn't necessarily mean that the block itself is bad; bad
inputs to the major functional block may be causing the block to
fail. How do you continue from there to isolate the failing block
and select an efficient starting point for GFI?

One diagnostic strategy is to test blocks that provide input to the
failing major block. Isolating the block causing a failure
involves tracing from the right-hand side toward the left, testing
each block in the path until one is found with good inputs and
bad outputs. This strategy works best when the string of blocks
leading up to a major block is short. Such is the case for most
of the sets of blocks in Figure 6-2.

A second diagnostic strategy, helpful when you have a longer
string of blocks leading up to a failing major block, is to divide
the blocks in half and begin testing a block halfway between the
first block in the string and the major block at the end. If the
middle block passes, keep dividing the failing string of blocks in
half and testing a middle block. If the middle block fails, test the
blocks to the left starting at the middle block. This second
strategy would be appropriate for the Video set of blocks in
Figure 6-2.

6-3

Bus Buffer

MICROPROCESSOR BUS

Clock and Reset

Address Decode

RAM

Bus Buffer

Clock and Reset

Microprocessor Bus

RAM

A

Dynamic RAM Timing

Ready Circuit

Address Decode

ROM

Bus Buffer

ROM

Ready Circuit

(continued on the next page)

Figure 6-2: Inputs to Functional Blocks

Address Decode

Bus Buffer

PARALLEL l/O

Clock and Reset

Ready Circuit

Address Decode

Bus Buffer

Clock and Reset

» Parallel VO

SERIAL VO

Ready Circuit

Interrupt Circuit

Address Decode

Bus Buffer

Serial /10

VIDEO

Clock and Reset

Video Control Video RAM Video Output

Ready Circuit

Figure 6-2: inputs to Functional Blocks- continued

Another strategy, used when a fault is likely to be near a failing
output pin of the failing major block, is to begin GFI backtracing
directly from the failing output pin, without checking the inputs
to the major functional block.

Diagnostic programs can speed up troubleshooting by starting
GFI closer to the actual problem. On the other hand, isolating
the failure to a very small area may require more time than is
saved in reduced troubleshooting time. There is a balance
between isolating the failure to a very small area and doing no
isolation of the failing circuit. Decisions on when to start GFI
and when to isolate the failure to a smaller area depend on your
UUT and the relative cost of additional programming effort
compared to the resulting savings in troubleshooting time.

IMPLEMENTING THE STRATEGY FOR
DIAGNOSTIC PROGRAMS 6.2.

6-6

Figure 6-3 shows a typical process to implement a diagnostic
program strategy. The diagnostic program executes a functional
test for each major functional block. If a fault condition is
generated during the test, the major functional block is possibly
faulty. To verify this suspicion, the inputs to the functional
block are checked. If the inputs are all good, then the major
functional block is indeed faulty. However, if one of the inputs
to a major functional block is not good, the fault probably lies in
the functional blocks which provide input to the major functional
block. In this case, the input functional blocks become the
suspect blocks and their inputs are checked. This process
continues until a block is found with all good inputs but a bad
output.

When this faulty functional block is identified, appropriate GFI
hints are generated to indicate the node (or nodes) where GFI
should start troubleshooting.

O Select a Major

Functional Block
(Cannot beTested
Indirectly by
Testing Another
Functional Block)

¥

A

Execute the Functional
Test for the Major
Functional Block

Fault
Condition?

The Functional
Block Is Suspect

A

Test Every Functional

Block which Provides

Inputs to the Suspect
Functional Block

4

Any Functional
Blocks Not Yet
Tested Directly
or Indirectly?

Yes Fault

Condition?

No

The Failure Is Within
the Suspect Functional
Block

A

Generate GFI
Hints or Start
GFI

y

A
C UUT Passes) (UUT Fails)

Figure 6-3: Identifying a Faulty Functional Block

DIAGNOSIS USING FAULT CONDITION
HANDLERS 6.3.

Fault condition handlers provide the means for communicating
9100A/9105A functional test failure information to the operator
for keystroke troubleshooting or to GFI for automated
troubleshooting.

What are Fault Condition Handlers? 6.3.1.

6-8

A fault condition is generated or "raised" in one of two ways:

g A built-in TL/1 function is run, and the UUT does not
respond correctly. For example, a microprocessor address
line cannot be driven to logic-high during a read or write
operation.

® A fault command is executed in a TL/1 program.

A fault condition handler is a TL/1 procedure, called by a fault
condition of the same name, that responds in some way to the
fault condition. For example, the handler might try to determine
the cause of the fault.

Each fault condition has a name. Fault conditions created by
built-in functions have defined names and parameters, listed in
TL/1 Reference Manual appendices. Fault conditions created by
your fault commands may have any name, including the same
name used by the built-in functions.

When a fault condition is raised, the system halts execution of
the current program. If your program contains a fault condition
handler with the same name as the fault condition, the program
statements inside the handler are executed. After the handler is
finished, execution of your program resumes where it left off.

If your program does not contain an appropriate fault condition
handler, execution of the program terminates and its calling
program (if any) is searched for a fault condition handler with

the specified fault condition name. This process continues until
an appropriate handler is found. If no handler is found, a fault
message will appear on the operator's display.

For more information on fault condition handlers, see Section
3.7 of the Programmer’s Manual.

Using Fault Condition Handlers 6.3.2.

The UUT go/no-go test should test only those functional blocks
that cannot be tested indirectly by other blocks. When the
go/no-go test detects a failure, the diagnostic program is used to
identify the failing block and to identify a failing node as a
starting point for troubleshooting.

To use fault condition handlers in a diagnostic program, you
need to do two programming tasks for each handler:

1. Use the fault command (with an appropriate fault
condition that you create) to generate the fault
condition if a test (or part of a test) of a functional
block fails. For example, if the diagnostic program
finds that the functional test of the video output
circuitry fails, you might choose to generate a fault
condition named video_output.

2. Create a handler for this fault condition. The handler
should check other input blocks to isolate the failing
functional block. It might also do further testing to
narrow down the zone of failure within a failing
functional block. And the handler will generate the
appropriate starting point for GFI by using the gfi
hint command.

A Diagnostic Test Example 6.3.3.

Suppose the video circuitry is failing. Testing begins with
execution of the go/no-go2 program, listed in Section 6.4 of this
manual. This program has many fault condition handlers at the

6-9

6-10

beginning, and it has six execute statements at the end that
actually execute the go/no-go test. Each of these execute
statements executes a different functional test program for a
major functional block. And each of these functional test
programs include the necessary fault condition handlers to
generate GFI hints appropriate for the fault condition
encountered (a listing for each of these programs is contained in
Section 6.5 of this manual). The GFI hints are very important to
the troubleshooting process; they are the means by which the
9100A/9105A communicates the results of its functional testing
to provide efficient starting points for GFI troubleshooting.

Suppose that the failing video circuitry does not affect any of the
six major functional blocks except rest video2. In this case,
test_bus2, test rom2, test_ram2, test_pia2, and test_rs232b all
pass, but test video? fails. The ftest video2 test is really the test
of the Video Output functional block. If this test fails, a video
fault condition is generated (suppose the video scan fault
condition is generated). Since the test video2 program has a
handler for video scan, the program statements inside this
handler are executed.

Once the hints to GFI are passed, execution of the video fault
condition handler (video scan) ends, the test program
(test video2) ends, and the diagnostic program (go_ nogoZ)
ends. A message appears on the operator's display saying that
GFI hints have been generated, and that GFI should be run.

The diagnostic program is structured so that only one failure is
isolated at a time. The problem should be isolated with GFI and
fixed when it is detected. It is appropriate to repair an isolated
fault before testing any further, since apparent multiple failures
often result from one physical problem on a board. For
example, a short between two nodes can appear as two failures.
After a fault has been repaired, the diagnostic program should be
run again to find other faults or to verify that no more faults can
be found.

DIAGNOSTIC PROGRAM FOR THE

DEMO/TRAINER UUT

program go_nogo2

The Go/No-go program is the highest level of the functional testing

and fault condition handlers.

The purpose of the Go/No-go test is to !

! determine whether the UUT is good or bad. This program executes six

! programs which test the six major functional blocks (Microprocessor !
Bus, ROM, RAM, Parallel I/0, Serial I/0, and Video). By testing the
six major functional blocks, the remaining functional blocks are

indirectly tested.

If the Go/No-go test detects a faulty UUT, further fault isolation is !
performed to isolate which circuit is causing the failure. The fault
condition handlers in the Go/No-go program and the other functional
test programs perform the fault isolation. The fault condition
handlers included in this program are handlers for those fault
conditions which may occur during any of the six major functional

! tests,

The major functional test programs include fault condition handlers
for fault conditions which are only generated within that program.
The first three programs (TEST BUS, TEST ROM, and TEST_RAM) use

are documented in the 9100/9105A TIL/1 Reference Manual.

TEST PROGRAMS CALLED:
test_bus2

test_ram2

test_pia2
test_rs232b

test_video2

1

1

1

1

1

1

1

1

1

1

1

1

!

1

1

1

1

1

1

1

1

1

1

1

1

1

i

!

! test_rom2
i

1

1

1

1

1

1

!

1

1

1

!

i

1

1

!

1

! recover
1
1
T
1
!
1
1
1

1
t
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! 1
built-in TL/1 tests and the built-in fault condition handlers that !
1
1
1
1
1
1
1
1
1
1
!
1
1
1
1
T
1
i
1

Test the microprocessor bus,
buffered bus, and address
select logic.

Test the ROM functional block !
of the Demo/Trainer UUT.

Test the RAM functional block !
of the Demo/Trainer UUT.

Test the PARALIEL I/O
functional block of the
Demo/Trainer UUT.

block and the Interrupt
Circuit functional block of
the Demo/Trainer UUT.

Test the VIDEO circuit of the
Demo/Trainexr UUT,

The 80286 microprocessor has al
bus controller that is totally!
separate from the pod. In !
some cases, the pod can get !
out of sync with the bus f
controller. The recover !
program resynchronizes the pod!

and the bus controller. !
1

6.4.

! FUNCTIONS CALLED: !
! retry access (access, addr, control) This function is executed when!
! a pod_timeout recovered fault !
! condition occurs. This !
! function repeats the attempted!
! access that failed and !
! determines if the access can
! be sucessfully repeated.

1
1
T

Global Variables Modified:
recover times Reset to Zero f

declare
global numeric recover_ times ! Count of executing recover().
end declare

GENERAL PURPOSE FAULT CONDITION HANDLERS

1 1
1 1
! The built-in fault conditions "pod_addr_ tied", "pod ctl tied", !
! "pod_data_ incorrect" and pod data_tied are generated when the pod !
! detects a stuck or tied line at the pod socket. These fault !
! conditions are not handled because the diagnostic message for these !
! faults cannot be made better by additional testing. If one of these !
1 1
1
1

handle pod forcing active (mask)
declare string mask
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD Forcing Lines Active fault"

fault forcing lines mask mask ! Redirect fault
end handle

handle ped interrupt active (mask)
declare string mask
declare global numeric tlo
declare string clear screen = "\1B[2J"
print on tlo ,clear_screen, "PCD Interrupt Line Active fault"

! Get the last two characters of the 64 bit string mask and decode to INTR/NMI

lines = val (mid(mask, len{mask)-3, 2),16)
if (lines and $10) <> O then
execute tst_intrpt ()
else if (lines and 1} <> 0 then
fault NMI_active
end if
end handle

handle pod misc_ fault
fault bad power ! Redirect fault
end handle

6-12

handle pod_special
end handle

handle pod timeout bad pwr
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD timeout bad power fault"

fault bad _power ! Redirect fault
end handle

handle pod_timeout_enabled_line (mask)
declare string mask
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear_screen, "POD Timeout Enabled line fault”

fault forcing lines mask mask ! Redirect fault
end handle

handle pod_timeout no_clk
declare global numeric tlo

declare string clear screen = "\1B[2J"

print on tlo ,clear screen, "POD Timeout No Clock at POD Pin 31"

execute tst_clock() ! Test Clock and Reset
end handle

handle pod timeout_ recovered (access attempted, ctl, addr)
declare string access_attempted
declare numeric ctl = $E0000000
declare numeric addr = $E0000000
declare global numeric tlo
declare string clear screen = *\1B[2J"
declare global numeric repeated timeouts
print on tlo ,clear_screen, "pod timeout recovered: "
podsetup 'enable ~ready' "off"
podsetup ‘enable hold' "off”"
podsetup ‘report forcing' *off"
repeated timeouts = repeated timeouts + 1

! DISABLE all lines that can be enabled, retry access, then turn enable
{ lines on until the access cannot be repeated. The lines that can be
! enabled on the 80286 are Hold and Ready.

if repeated_timeouts > 10 then
fault dead kernel
else if retry access(access attempted, ctl, addr) fails then
fault dead kernel
else
podsetup ‘enable hold' "on"
if retry access(access_attempted, ctl, addr) fails then
fault hold circuit
else
podsetup 'enable ~ready' "on"
if retry access(access_attempted, ctl, addr) fails then
execute tst_decode ()
execute tst_ready ()
else
print on tlo ,clear_screen
end if
end if
end if
end handle

handle pod timeout setup
end handle

handle pod_uut_ power
fault bad_power ! Redirect fault
end handle

handle iomed dce
end handle

priprrrrbtLREbLLLLLLILLLLLLLLLLIOGLE

! Redirected Fault Handlers !
trrrrrtrrtrrrLLLLLLLLLLLLLOLOLYL

handle forcing lines (mask)
declare string mask
declare global numeric recover times

! attempt to recover synchronization between pod and bus controller before
! testing the decode, ready or clock circuits. If the recover procedure

! has been executed at least twice, then go ahead and test decode, ready or
! the clock circuit.

if recover times < 2 then
execute recover ()
else
lines = val (mid(mask, len (mask)-7, 8),16)
if (lines and 1) <> 0 then
execute tst_decode ()
execute tst_ready()
else if (lines and $10) <> 0 then
execute tst_ clock () ! Test Clock and Reset
end if

! The status lines HOLD, PEREQ, BUSY and ERROR are not used in the
! Demo/Trainer UUT. Display a message if one of these lines is active
! and wailt for the condition to be fixed.

loop while (lines and $E2) <> O
print on tlo ,clear screen
if {(lines and 2) <> 0 then
print on tlo ,"HOLD is active; Press RESET to continue"
else if (lines and $20} <> 0 then
print on tlo ,"PEREQ is active; Press RESET to continue”
else if (lines and $40) <> 0 then
print on tlo ,"~BUSY is active; Press RESET to continue"
else if (lines and $80) <> 0 then
print on tlo ,"~ERRCR is active; Press RESET to continue"
end if
wait time 2000
end loop
end if
end handle

6-14

handle bad power

declare global numeric t2o

declare string clear screen = "\1B[2J"
declare global string messg

print on t2o ,messg+"FAULT DETECTED"
loop until (readstatus () and $3D00) = 0

fall ($14)

1f (readstatus{} and $3C00) = $3C00 then
print on tlo ,clear screen, "POD UUT Power"
print on tlo ,"POWER UP and press RESET on Trainer UUT"

wait time 2000

print on tlo ,clear_ screen, "CONTINUING..."

else
if (readstatus()
if (readstatus()
if (readstatus()
i1f (readstatus()
if (readstatus()
end if
end loop
untested ($14)
end handle

and $100) <> 0 then fault ‘CAP failure at POD Pin 52°
and $400) <> 0 then fault 'POWER failure at POD Pin 30
and $800) <> 0 then fault 'POWER failure at POD Pin 62°
and $1000) <> 0 then fault 'GROUND failure at POD Pin 35°
and $2000) <> 0 then fault 'GROUND failure at POD Pin 9°'

function retry access (ACCESS, ADDR, CTL)

! Retry last access performed using parameters from fault handlers.

handle pod_timeout bad pwr

fault
end handle

handle pod_timeout_enabled line

fault
end handle

handle pod_timecut no_clk

fault
end handle

handle pod timeout recovered

fault
end handle

handle pod_timeout setup

fault
end handle

declare string ACCESS
declare numeric CTL
declare numeric ADDR

if ADDR <> $E0000000 then

address = ADDR

else if CTL <> $E0000000 then

address = CTL
else

address = 0
end if

1f ACCESS = "READ" then
if read addr address fails then fault

else if ACCESS = "WRITE" then
if write addr address, data $A5C3 falls then fault

end if

end function

frprprrrrrLLILLLLILILOEERLELIOLOLILOLIOLILILILIOLTY

! SETUP AND SYSTEM INITIALIZATION !
SRR R R R R R R R R R R R R R R R R RS

recover_times = 0
execute recover ()

Recover synchronization between PCD
and the 80288 bus controller.

podsetup ‘report power® "on"
podsetup ‘report intr' "off"
podsetup 'report address' “on"
podsetup 'report control' “on"
podsetup 'report data' "on"
podsetup 'report forcing' *on*

gfi clear

connect

execute
execute
execute
execute
execute
execute

clear "yes"

test_bus2 ()
test rom2 ()
test_ram2 ()
test piaz ()
test rs232b ()
test video2 ()

1

Turn on reporting functions except
interrupts which is tested in the
SERIAL I/0 test (test rs232b).

CLEAR ALL GFI RECOMENDATIONS

! Clear all connect information.

end program

6-16

FUNCTIONAL BLOCK TESTS FOR THE
DEMO/TRAINER UUT DIAGNOSTIC PROGRAM 6.5.

This section contains the following functional test programs,
which are necessary to support the diagnostic program for the

Demo/Trainer UUT:
test_bus2 Tests the Microprocessor Bus functional
block.
test_pia2 Tests the Parallel 1/O function block.
test_ ram2 Test the RAM functional block.
test rom2 Tests the ROM function block.

test_rs232b Tests the Serial I/O function block.

test_video2 Tests the video circuitry (the Video
Control, Video RAM, and Video Output
functional blocks).

These programs are much like the programs by the same name
found in Section 4 and used in Section 5 of this manual.
However, these programs also contain the necessary fault
condition handlers and gfi hint commands to tell GFI where to
start backtracing if the functional block fails.

6-17

program test_bus2

Trrpprtrrrttrtr et IIILLELIELLLILLIIOLIILIIOELLIOLIOEILITIOIIREITEILI I TILITLI LTI IR REIEIITIITITIITTILEILILLIILIILIILTY

{ This program tests the unbuffered microprocessor bus, performs an
access at each decoded address of the buffered bus, and checks the

! data bus for bus contention (where a component outputs onto the data

! bus at incorrect times). If bus contention is detected then the

! program TST CONTEN is executed. TST CONTEN checks for incorrect !
enable line conditions on all the components on the buffered data bus.!

1 1
1 1
1 1
t 1
1 1
1 1
1 1
1 1
t i
! TEST PROGRAMS CALLED: !
1 tst_conten (addr, data bits) Test for bus contention on

! the data bus by checking the

{ enable lines of all devices

! on the data bus. !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Local Constants:

ZERO_AT_ROMO Address of zero data in ROMO
ZERO AT ROML Address of zero data in ROML
IO BYTE I/0 BYTE address specifier

MEM WORD MEMORY WORD address specifier !

Local Variables Modified:
X value returned from a read

! Main Declarations 1
Trrrrrnrr L rerernr R IR IIILITIIIIINTILIIIIITIIO IR R LILILITEIIIIIILITLILILIILIGLYL

declare numeric ZERO AT ROMO = $EOO2A ! Location in ROMO where 0 exists
declare numeric ZERO AT ROM1 = $F0022 ! Location in ROMl where 0 exists

! Setup Statements

podsetup 'enable ~ready' "on"

podsetup ‘report forcing*® "on"

IO BYTE = getspace space "1/o", size “"byte"

MEM WORD = getspace space "memory", size "word”

! Test the Unbuffered Microprocessor Bus.
testbus addr O
! Test the Extended Microprocessor Bus and Address Decoding.

setspace (MEM WORD)
read addr 0

read addr $10000
write addr $20000, data 0
read addr $30000
read addr $ECC00Q
read addr $F0000
setspace (IO BYTE)
read addr 0

read addr $2000
read addr $4000

RAM BANK 0

RAM BANK 1

VIDEC RAM (write only)
INTERRUPT POLL

ROM BANK O

RCM BANK 1

VIDEO SELECT
RS232 SELECT
PIA SELECT

6-18

setspace (MEM WORD}
X

! Test for Bus Contention driving lines low by accessing unused address space

read addr $50000 ! SPARE-2 ADDRESS SPACE
if x <> $FFFF then
execute tst_conten($50000, cpl(x) and SFFFF)
return
end if

Test for Bus Contention driving lines high by reading and writing RAM
If failure then check for bad RAM by reading zeros from 2 other devices.
write addr 0, data 0

X = read addr O

! WRITE and READ RAM addr 0O
if x <> 0 then

! If fails then check for bad RAM
I by reading 0's at ROMO and ROM1
if (read addr ZERO AT ROMO) <> O then

if (read addr ZERO_AT ROM1) <> O then

execute tst_conten{ 0, x)
return

end if
end if
end if

end program

program test pla2

FUNCTIONAL TEST of the PARALLEL I/O functional block.

! This program tests the PARALLEL I/0 functional block of the

! Demo/Trainer. The two LEDs and the four pushbutton switches are

! tested. The test operator is prompted to visually inspect the LEDs
as the LEDs count a series of numbers.

1 1
1 1
1 1
1 1
1 1
1 1
$ i
t TEST PROGRAMS CALLED: f
! abort_test (ref-pin) If gfi has an accusation, !
! display the accusation; !
! otherwise create a gfi hint
! for the ref-pin and terminate !
! the test program (GFI begins
! troubleshooting) . !
1 1
! TEST FUNCTIONS CALLED: !
t keys (key number) Test Demo/Trainer pushbutton !
! - key key number. Prompt test !
! operator to push the key.
1

1

1

!

1

leds (led_addr, led name} Test Demo/Trainer LED led name!

which is driven by the PIA and!

has the address led addr. i

SRR R R R R R R R R AR R R RN A RR RS R AR DR R RE RN

IER RS R R R R R R R R R R N R R R R A DR R RS

! Main Declarations !

IR R R R R R R R R R R R R R A RO R R R R R R R R AR R R RN R R

declare global numeric tlb ! Terml buffered output & input
declare global numeric tli ! Terml unbuffered input

trrrrrrrrrrrrILLLLILLIOLIOEILIILILIRILRITI LI I I TIIITIITITISPRISRETIITITITITIIIIITITITITI I I T T eI rrig

! FAULT CONDITION HANDLERS: !
! These fault conditions are generated by the this program. These !
! handlers perform isolation of the faulty circuit. The handlers !
! which isolate the LED problems perform a GFI test on the LED. !
! If all signals are good and the test operator has failed the LED,!
! then the LED is accused as a bad component. !
0000 0 0 0 0 O A A A 0 O 0 O O O O O O A

handle 'PIA LED A failed'
declare global string rev
declare string newline = "\nl"

if gfi test "U32-1" fails then
abort_test (“U32-1")
else
if gfi test "U33-1" fails then
abort_test ("U33-1")
else if gfi test "U33-13" fails then
abort_test ("U33-13")
else if gfi test "U33-10" fails then
abort_test ("U33-10"
else if gfi test "U33-8" fails then
abort_test ("U33-8")
else if gfi test "U33-7" fails then
abort_test ("U33-7")
else if gfi test "U33-2" fails then
abort_test ("U33-2")

6-20

else if gfi test "U33-11" fails then
abort_test ("U33-11%)
else if gfi test "U33-6" fails then
abort test (“U33-6")
else
print rev, newline,"LED A IS BAD", newline, "REPLACE LED A"
end if
end if
end handle

handle 'PIA LED B failed®
declare global string rev
declare string newline = *\nl"

if gfi test "U46-1" fails then
abort_test ("U46-1")
else
if gfi test "U47-1" fails then
abort_test ("U47-1")
else if gfi test "U47-13" fails then
abort_test ("U47-13")
else if gfi test "U47-10" fails then
abort_test ("U47-10"})
else if gfi test "U47-8" fails then
abort_test ("U47-8")
else if gfi test "U47-7" fails then
abort_test ("U47-7")
else if gfi test "U47-2" fails then
abort_test ("U47-2")
else if gfi test "U47-11%" fails then
abort_test ("U47-11%)
else if gfi test "U47-6" fails then
abort_test ("U47~6")
else
print rev, newline, "LED B IS BAD", newline, "REPIACE LED B"
end if
end if
end handle

handle ‘PIA KEY 1 failed®
abort_test ("U31-14")
end handle

handle 'PIA KEY 2 failed®
abort_test ("U31-15"})
end handle

handle ‘PIA KEY 3 failed'
abort test ("U31-16")
end handle

handle 'PIA KEY 4 failed®
abort_test ("U31-17")
end handle

6-21

function keys (keynum)

declare numeric keynum ! Number of key to test.
declare string norm = "\1B{Om" ! Normal video escape string
declare string rev = "\1B[0;7m" ! Reverse video escape string

declare string entry
declare string fail = »»
declare global numeric tlb
declare global numeric tli

mask = setbit (keynum - 1)

loop until fail = chr($D) ! loop until YES key
print on tlb ,"\nlPress ", rev,* UUT KEY ", keynum,* ",norm," pushbutton"
print on tlb ,"Press any 9100 key if test is stuck"
loop until (poll channel tl1i, event "input”) =1
if ((read addr $4004) and mask) = O then return

end loop

loop until (poll channel tli, event "input®) =0 ! Flush input buffer
input on tli ,entry

end loop

print on tlb ,"\nlPress “,rev," YES ", ,norm," to fail KEY ", keynum, " test,"
print on tlb ,"Press "“+rev+" NO "+norm+" to continue key test,”
input on tli ,fail

end loop

print on tlb ,"\nl\ni"

fault ! Fail Key test (set termination
end function ! status of function to fail.

IR RERERRR SRR SRS SRR ESRRR SRR RRNSSSRRRRR AR RRRE RS RSN RN SRR R RSN
function leds(led addr, led name)

declare numeric led addr

declare string led_name

declare string key

declare string norm = "\1B{Om"

declare string bold = "\1B{1lm"

declare string rev = "\1B{7m"

declare string clear screen = "\1B[2J"
declare string no_auto_linefeed = "\1B[20h"

declare global numeric tli
declare numeric array [0:10] numbers

numbers [0] = $CO
numbers [1] = $F9
numbers [2] = $A4
numbers [3] = $BO
numbers [4] = $99%
NO = chr{$7F)

numbers [5] = $92
numbers [6] = $82
numbers [7] SF8
numbers [8] = $80
numbers [9] = $98
YES = chr($D)

I

P

print norm, clear_screen, “Watch LED %, led name, " count"

print "Press ", rev, " ENTER ", norm, " key to start LED counting."
input key

print clear screen

for i =0 to 9
write addr led_addr, data numbers {[i]
wait time 500

next

6-22

. write addr led addr, data $7F

print clear_screen, "\1B[201"
print *\1B[1;1fDid LED *, led name, " display ALL segments off, then"
print "\1B[2;1fdigits O to 9, then only the Decimal Point 2"
print "\1B[3;fpress: "+rev+" YES "+norm+" or "+rev+" NO "+norm
loop until key = YES or key = NO
input on tli ,key
if key = NO then fault
end loop
write addr led addr, data $FF \ print no_auto linefeed,clear screen

end function

tlb = open device "/terml", as "update", mode "buffered"
tli = open device "/terml", as "input", mode "unbuffered"
execute pia init ()

if leds($4000, "A") fails then fault 'PIA LED A failed' \ return
if leds (%4002, "B") fails then fault *PIA LED B failed' \ return

if keys(l) fails then fault *PIA KEY 1 failed' \ return
if keys(2) fails then fault °'PIA KEY 2 failed' \ return
if keys(3) fails then fault 'PIA KEY 3 failed' \ return
if keys(4) fails then fault 'PIA KEY 4 failed' \ return

end program

6-23

program test ram2

trrrrrrrrrrLL LTI II I TR T LIRRILIELIILIITIPILILITITTIITIRI LI RI ISR TITTITTITIITITI LI RIS PITITEILITIEITI I I TILEILEIELILILILIIOLGL

! FUNCTIONAL TEST of the RAM functional block.

This program tests the RAM functional block of the Demo/Trainer. The !
TL/1 testramfast command is used to test the RAMs. If the RAMs are
found to be faulty, then one of twelve built-in fault conditions is
generated.

1 1
1 1
1 i
1 1
1 1
1 1
! !
! TEST PROGRAMS CALLED: !
! abort_test (ref-pin) If gfi has an accusation, !
1 display the accusation; i
! otherwise create a gfi hint

1 for the ref-pin and terminate !
! the test program (GFI begins

! troubleshooting) . !
1

! FAULT CONDITION HANDLERS: !
! Built-in testramfast fault condition handlers !
1

handle ram addr fault (data mask)
declare numeric data mask
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRAM addr line fault detected, CONTINUING"
fault ram_component data bits data_mask
end handle

handle ram addr addr tied (data mask)
declare numeric data mask
declare string clear screen = *\1B[2J"
print clear screen
print "\nlRAM addr lines tied detected, CONTINUING"
fault ram_ component data_bits data_mask
end handle

handle ram addr data tied (data_expected, data}

declare numeric data_expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear screen

print "\nlRAM addr-data tied detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram addr data tied unconfirmed (data_expected, data)
declare numeric data_expected
declare numeric data
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM addr-data tied detected, CONTINUING"
fault ram component data_bits (data xor data_expected)
end handle

6-24

handle ram data data tied (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear_ screen

print "\nlRAM data lines tied detected, = CONTINUING"

fault ram component data_bits (data xor data_expected)
end handle

handle ram data fault (data)
declare numeric data
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM data line fault detected, CONTINUING"
fault ram component data_bits data
end handle

handle ram data_incorrect (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlBAD RAM data detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram data high tied (data expected data)

declare numeric data _expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlRAM data tied high detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram data_ low _tied (data_expected, data)

declare numeric data expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print "\nlRAM data tied low detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram cell cell tied (data_expected, data)

declare numeric data_ expected

declare numeric data

declare string clear_screen = "\1B[2J"

print clear screen

print "\nlRAM cells tied detected, CONTINUING"

fault ram component data_bits (data xor data_expected)
end handle

handle ram cell low_tied (data_expected, data)

declare numeric data_expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print *"\nlRAM cell tied low detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

6-25

Redirected fault handler

1 1
1 1
! The RAM block can fail if a problem exists with the ready circuit. !
! So test the ready circuit, then if the ready circuit is good, use !
! the data bits parameter passed from the testramfast built-in fault !
! handlers to test the failing RAM IC. If the RAM IC is good then !
t test the data bus at the bus buffers. (Testing the data bus buffer !
! will detect any problem in the data bus}. !
1

handle ram component (data bits)
declare numeric data bits
declare string array [0:$15] ram ic

ram ic[0] = "U55" \ ram_ic[l] = "US54" ! RAMs US55, US4
ram ic[2] \ ram_ic(3] ! RAMs US53, U52
ram ic(4] \ ram ic[5] ! RAMs U51, U50
ram ic[6] = "U49" \ ram ic[7] ! RAMs U49, U48
ram ic[B] = "U41" \ ram ic[9] = ! RAMs U4l, U40
ram ic[10] = "U39* \ ram ic[1ll]} = "U38" ! RAMs U39, U38
ram ic[12] = "U37" \ ram ic[13] = "U36" ! RAMs U37, U36
ram ic(14] = "U35" \ ram ic[15] = "U34" ! RAMs U35, U34

! If ready circuit is untested, then check Ready circuit

if(gfi status "Ul-4") = "untested" then
if gfi test "Ul-4" fails then abort_test {"Ul-4")
end if

! Check highest order ram that is failing, using ram ic array to get refname.

if data_bits <> 0 then
bad ram ref = ram ic[msb(data bits)] + "-1"
if gfi test bad ram ref fails then abort_test (bad ram ref)
end if
! Check Data Bus buffers.
if gfi test "U3-2" fails then abort_test ("U3-2")

if gfi test "U23-2" fails then abort test ("U23-2")
end handle

! Setup

podsetup ‘enable ~ready' "on"

podsetup 'report forcing' "on"

setspace space (getspace space "memory", size "word")
! Main part of test

testramfast addr 0, upto $1FFFE, delay 250, seed 1

end program

program test rom2

FUNCTIONAL TEST of the ROM functional block.

This program tests the ROM functional block of the Demo/Trainer.

The

TL/1 testromfull command is used to test the ROMs. If the ROMs are

found to be faulty, then one of seven built-in fault conditions is

generated.

abort_test (ref-pin)

1

!

1

1

1

1

1

I TEST PROGRAMS CALLED:
1

1

1

1

[

! troubleshooting).
1

If gfi has an accusation,
display the accusation;
otherwise create a gfi hint
for the ref-pin and terminate
the test program (GFI begins

! FAULT CONDITION HANDLERS:
! Built-in testromfull fault condition handlers

handle rom sig incorrect (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlBAD signature detected, CONTINUING®
fault rom_component addr bits addr
end handle

handle rom addr fault (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom address line fault detected, CONTINUING*
fault rom component addr bits addr
end handle

handle rom addr addr tied (addr)
declare numeric addr
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRom address line tied detected, CONTINUING"
fault rom component addr bits addr
end handle

handle rom data high tied_all (addr)
declare numeric addr
declare string clear_screen = “\1B[2J"
print clear_ screen
print "\nlRom data all high detected, CONTINUING"
fault rom component addr bits addr
end handle

handle rom data low tied _all (addr)
declare numeric addr
declare string clear screen = "\1B[2J%
print clear screen
print "\nlRom data all low detected, CONTINUING"
fault rom_component addr bits addr
end handle

6-27

handle rom data_ fault (addr)
declare numeric addr
declare string clear screen = “\1B[2J"
print clear screen
print "\nlRom data line fault detected, CONTINUING"
fault rom_ component addr_bits addr
end handle

handle rom data data tied (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom data lines tied detected, CONTINUING"
fault rom component addr bits addr
end handle

! Redirected fault condition handler:

! Use falling address bits parameter passed from testromfull fault

! condition handlers to gfi test the ROM bank that failed.

handle rom compenent (addr_bits)
declare numeric addr bits

if addr_bits >= $F0000 then
if gfi test "U27-1" fails then abort test ("U27-11") \
if gfi test "U28-1" fails then abort test ("U28-11"} \
else
if gfi test "U29-1" fails then abort test (“U29-11%} \
if gfi test "U30-1" fails then abort_test (*U30-11") \
end if
end handle

return
return

return
return

1 Setup.
podsetup ‘'enable ~ready® "on"
podsetup 'report forcing*® "on"
setspace space (getspace space "memory", size "word")

! Main part of Test.

testromfull addr $F0000, upto S$FFFFE, addrstep 2, sig $156F
testromfull addr $E0000, upto SEFFFE, addrstep 2, sig $B61E

end program

6-28

program test rs232b

FUNCTIONAL TEST of the SERTAL I/O functional block.

1
1
This program tests the SERIAL I/0 functional block of the Demo/ !
Trainer. The two RS-232 ports are tested by setting three Dip !
Switches to loop back the two ports (SW4-4, SW4-5 and SW6-4 loop back !
ports A and B). The SERIAL I/0 functional block also outputs two !
interrupt request signals. This program also checks the interrupt !
circuitry. !
1

TEST PROGRAMS CALLED: !
abort_test (ref-pin) Call fail for reference name !
then if gfi has an accusation !

display the accusation else !

create a gfi hint for the !

1

program (GFI begins trouble-
shoot ing).

1

1

1

1

1

1

1

1

1

1

1

1

1

1

!

1 1
! 1
! !
! frc_int () POD PROGRAM forces repetitive !
! interrupt acknowledge cycles

! and returns first interrupt

! vector found on data bus. !
1 1
! rd_cscd O POD PROGRAM returns the 24 bit!
1 interrupt cascade address that!
! was found on the address bus

! during the last interrupt

! acknowledge cycle.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

!

1
1
1
rd rearm () POD PROGRAM returns the most !
recent interrupt vector and !

rearms the pod to respond to !

the next interrupt. !
1

1

1

!

1

1

FUNCTIONS CALLED:
sync_buffer (address, data) Synchronize FIFO buffer in

DUART to be last byte received
Receive buffer 1s located at
the value of address. The 1
data in data is written to the!
DUART and then read until it !
appears in the FIFO or count !

expires. t

[ER RN N E R R N
IR e e R A R R B
! Main Declarations !
IR R R R S S R R AR AR R R R R R R R R S R R AR AR RN AR AR R R SRR R R R SRR AR AN
declare

string g ! used to get input from keyboard

string rev = "\1B[0;7m" ! Reverse Video escape sequence

string norm = "\1B[Om" ! Normal Video escape sequence

end declare

! FAULT HANDLERS: !
! These fault conditions are generated by the this program. These !
! handlers verify the fallure using the Probe or I/O Module and

! then pass control to GFI. !
prrtrprrtrrrrr It I I IIL LI I SISLEITLILILILITIIILIIRITIIIITILIISLRIRIITIIIIPISEITIITTITITITI IRt Iy

handle *RS232 Port A failed®
if gfi test "Ull-35" fails then abort test {("U11-35")
end handle

handle 'RS232 Port B failed!'
if gfi test "Ull-5" fails then abort_test (“Ull-5")
if gfi test "Ull-11" fails then abort_test ("Ull-11%)
end handle

handle 'Interrupt failed®
if gfi test "Ul10-2" fails then abort_ test (*Ul0-2"}
if gfi test "U20-9" fails then abort_test (*U20-9")
end handle

function sync buffer(address, data }
declare numeric address
declare numeric data

! Synchronize FIFO buffer in DUART. Write and then read until correct data
! is returned or count has expired.

write addr address, data data ! Transmit Data 31 on port A
walt time $200
cnt =0 \x=0
loop until x = data or cnt > 3
x = read addr address
ent = cnt + 1
end loop
end function

! Set interrupt acknowledge cycles on and use the 80286
! pod specific programs rd_rearm(), frc_int()} & rd_csecd{).

podsetup ‘report intr' "off"

podsetup 'intr ack on’ ! Enable Interrupt Ack. cycles
option = getspace space "i/o", size "byte"

setspace (option)

execute check loop ()

execute rd_rearm() ! Clear interrupts

6-30

Q ! Main part of Test. Verify DUART port A.

sync buffer($2006, $6l) ! Synchronize FIFO in DUART for port A
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ((read addr $2002) and $F) <> $D then fault 'RS232 Port A failed' \ return

if (read addr $2006) <> $55 then fault 'RS232 Port A failed' \ return
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if ({read addr $2002) and $F) <> $D then fault 'RS232 Port A failed' \ return
if (read addr $2006) <> $55 then fault 'RS232 Port A failed* \ return

! Verify DUART port B and interrupts.

sync buffer{ $2016, $61) ! Synchronize FIFO in DUART for port B
write addr $201E, data SFF ! set output port low
write addr $2016, data $31 ! Transmit Data 31 on port B

if frc int{) <> $22 then fault 'Interrupt failed® \ return

if rd_csed() <> $2016 then fault 'Interrupt failed' \ return

if (readstatus{) and 8) <> 8 then fault 'Interrupt failed' \ return

if (read addr $2016) <> $31 then fault 'RS232 Port B failed' \ return

if frc int() <> $27 then fault ‘Interrupt failed' \ return

write addr $201C, data SFF

1f ((read addr $201A) and 2} <> 0 then fault 'RS$S232 Port B failed® \ return

end program

6-31

program test video2

! FUNCTIONAL TEST of the VIDEO functional block !

This program tests the VIDEO functional block of the Demo/Trainer. !
! The video test uses the gfi test command to run stimulus programs and !
! to check the outputs of the Video circuit against the stimulus program!
! response files. The gfi test command returns a passes status if all !
! the measured results from running the stimulus programs match the

response files. Otherwise the gfi test command returns a fails

status.

1

1

1

1

1

1

1 1
1 1
1 1
1 1
! TEST PROGRAMS CALLED: !
! abort_test (ref-pin) If gfi has an accusation, !
! display the accusation; !
! otherwise create a gfi hint !
! for the ref-pin and terminate !
! the test program (GFI begins

! troubleshooting). !
1 1
! tst_videtl () Test program to test the video!
! control functional block t
! outputs. Returns passes !
! termination status if f
! functional block is good else !
t return fails termination

! status. !
1 1
1 1
1

1

1

1

1

tst_vidram () Test program to test the video
RAM functional block cutputs.
Returns passes termination
status if functional block is
good else return fails
termination status.

! FAULT CONDITION HANDLERS: 1
! These fault conditions are generated by the this program. These !
! handlers isolate the failure in the video circuit to the Video !
! control section, Video RAM section or the Video output section. !
! Once the failing Video subsection has been identified, then GFI !
! is started. !

1

handle video output
! IF Video Control section is bad, tst_videctl will start GFI.
if tst_videtl() fails then return
! IF Video RAM section is bad, tst_vidram will start GFI.
if tst_vidram() fails then return
! Video Control and Video RAM have passed. Video Out is bad. Start GFI.

abort_test ("J3-9")
end handle

6-32

handle video_scan

gfi hint "J3-8"

gfi hint "J3-9»

fault ‘'gfl hints generated' ' please run gfi®
end handle

trrrrrrrrrrrrr R EERLILILIOLII LTI R ILILILIIIO LI I I IITILI I T I RSRLI LI I I TIGRITILI I I I IELIELIITIITI I ILIIIOLGL

! FUNCTIONAL TEST of the VIDEO Functional Block. !
Trrtrrrrrrren LIt I TP RRLILILILII R RILITILIT I ITIRILILILI IR I RRLIIIIIIISEIRILIIIIITLTIY

! Setup and initialization.

connect clear "yes*
podsetup 'enable ~ready' "on"
print "\nl\nl"

! Main part of Test.

if gfi test "J3-8" fails then fault video_scan \ return
if gfi test "J3-9" fails then fault video_scan \ return

if gfi test "U78-11" fails then fault video_scan \ return
if gfi test "U78-28" fails then fault video_output \ return
if gfi test "U78-29" fails then fault video_output \ return
if gfi test "J3-7" fails then fault video output \ return

end program

6-33

(This page is intentionally blank.)

6-34

Section 7
Troubleshooting

After a failing functional block is isolated with a diagnostic
program, Unguided Fault Isolation (UFI) or Guided Fault
Isolation (GFI) troubleshooting can be used to backtrace to the
bad node or component.

UNGUIDED FAULT ISOLATION (UFI) 7.1.

UFI troubleshooting is valuable when you need experience with
stimulus programs before expanding to the GFI environment. It
lets you use stimulus programs to determine whether a node is
good or bad, without having to enter a node list for the UUT.

UFI is used in a manner similar to GFl: the GFI key on the
operator's keypad begins the process. Unlike GFI, UFI is
designed to test only output pins. When testing with the probe,
the output source for a node can be characterized and the other
points on the node (such as inputs) can be probed looking for
the same response. However, when testing with the I/O
module, only the output pins can be measured because the other
pins on the node are connected to I/O module pins different from
the pins UFI thinks it should be measuring.

When an operator needs to troubleshoot boards before the GFI

database is developed, he can use stimulus programs in UFI
mode while waiting for GFI to be completed. However, he

7-1

needs to understand the UUT since UFI does not recommend
the next location to test.

GUIDED FAULT ISOLATION (GFI) 7.2.

The 9100A/9105A’s built-in GFI algorithm guides an operator
in diagnosing a faulty circuit to the component or node level
without assistance from a skilled technician.

Once a functional test or larger diagnostic program has generated
a list of suspect nodes, GFI troubleshooting can begin. The
GFI key on the operator's keypad starts the process. GFI
begins with a bad output and tests the suspect node. Nodes are
exercised with a stimulus program and determined to be good or
bad by comparing their measured response to responses learned
from a known-good UUT.

When a node is bad, GFI tests the inputs which affect that node
and recommends which node to test next. If the output of a
component is bad and all inputs to the component are good, GFI
accuses the component of being bad or the output node of being
loaded. The node may be shorted to another node or a defective
component may be loading the node. If an input is bad and the
output source for that node is good, GFI accuses the node of
having an open circuit.

The GFI capability is general enough to troubleshoot most
digital circuits. To apply GFI to a particular UUT, however,
you will need to supply UUT-specific information to the GFI
database for that UUT. The files used for this database are
summarized in Section 7.5 of this manual and described fully in
the Guided Fault Isolation section of the Programmer's Manual.

STIMULUS PROGRAMS 7.3.

7-2

Stimulus programs are TL/1 programs used by GFI or UFI to
exercise UUT nodes in such a way that responses at the nodes
can be analyzed and compared to responses of nodes on a

C

known-good UUT. A typical stimulus program consists of up

to 6 main parts:

1. (As required) - Initialize the UUT and define the
measurement device.

2. (As required) - Setup of the pod, probe, or I/O
module.

3. Use the arm command to start the measurement of
the node response.

4. Use any commands necessary to apply the stimulus.

5. Use the readout command to end the measurement of
the node response.

6. (Asrequired) - Restore any conditions altered by the

setup step above (step 2).

Stimulus programs should satisfy three very important criteria:

¢ The program must be independent, initializing the UUT as
required. This is because GFI can begin backtracing at
any node, and the state of the UUT, prior to running the
stimulus, is unknown. The program must also restore
any adjustments it makes to the calibration offset.

® During stimulus execution, only one pin should drive a
node: that is, during the period between the arm and
readout commands, one and only one pin should be a node
signal source (data should flow in only one direction).

® There should be at least one stimulus program for each
output to the node.

See the "Stimulus Programs” section in the Programmer's
Manual for more detailed information on stimulus programs.

7-3

STIMULUS PROGRAM RESPONSES 7.4.

Both UFI and GFI select the appropriate stimulus programs to
exercise a node to be measured and compare the actual response
at the node with a stored response from a known-good UUT.
These responses may be any of the following (or combinations
of them):

¢ CRC Signature.

® Transition Count.

hd Frequency.

® Asynchronous Level History.

¢ Synchronous Level History.

The information below summarizes each of these response

measurements. See the Guided Fault Isolation section of the
Programmer’s Manual for more complete information.

Learning Responses From a
Known-Good UUT 7.4.1.

7-4

The 9100A editor's LEARN function is used to learn a set of
responses measured on known-good UUT nodes. Once a
stimulus program is written to exercise a node, a response file
can be generated. To do this, the 9100A is commanded to learn
responses at a node or set of nodes and the system prompts the
operator to connect the measurement device (probe or I/0
module) to the component providing the node signal source.
The 9100A makes a series of measurements and determines the
characteristics. It learns the response with three measurements
(early, normal, and late clock or sync events) to make sure the
response is stable and that the measurement can be used as a
reliable characterization of that node.

Node characterization may use one or more of five
characteristics to determine whether the node is good or bad.
You can select which of the five should be saved in a response

O

file. GFI and UFI use these saved characteristics to determine
whether a node is good or bad.

CRC Signatures 7.4.2.

It is very important to ensure that a CRC signature used in node
characterization will properly identify all good UUTs, at all
measurement temperatures and power supply levels. A marginal
signature occurs when the measured node changes state near the
clock transition or when the Start, Stop, or Clock signals are not
stable. A marginal signature may appear stable on one UUT and
thereby lead to a false sense of security. Other UUTs may yield
different signatures because of temperature or power supply
variations.

When the 9100A editor learns a signature, it attempts to identify
marginal CRCs by collecting signatures with advanced clock
edges, normal clock edges, and delayed clock edges. If a
signature has the same value for advanced and normal clock
edges, it will be suffixed by a "-" sign. If a signature has the
same value for normal and delayed clock edges, it will be
suffixed by a "+" sign. If all three values agree, the signature is
displayed with no qualification.

A variable signature results if the Start, Stop, or Enable signals
are irregular, compared to the Clock signal. In addition, since
the Start, Stop, and Clock signals are edge-triggered, unstable
signatures will result if the Start or Stop signal edge occurs at the
same time as the Clock signal edge.

Figure 7-1 shows how to test whether the start/stop interval is
stable. Connect the Clock to the clock signal you want to use.
Connect the probe or I/O module to a logic-high level and
connect the Start and Stop lines to the locations where you
would connect these lines when making the signature
measurement. If the start/stop interval is stable, a constant
number of clocks will occur between the start and stop
condition, and the signature will be constant. If the CRC
signature is not constant, the start/stop interval is unstable.

7-5

Start
Signal

Stop
Signal

Start/Stop
Interval

Clock
(On Falling Edge)

Data
(Logic High)

s

Constant number of clock pulses I

Figure 7-1: Testing for Start and Stop Stability

O Unstable signatures may also be caused by Start or Stop signal
edges which occur at the same time as the Clock signal edge or
by Start or Stop signals which are asynchronous to the selected
clock signal. Use an oscilloscope to determine whether a line is
irregular or whether a timing problem exists between the Clock
signal and the Start or Stop signal.

If unstable signatures are caused by Start or Stop signal edges
which occur at the same time as the Clock signal edge, select the
other Clock edge (+ or -) and use the geroffset and setoffset
TL/1 commands to adjust the measurement timing.

Other Characterizations 7.4.3.

Some circuits are difficult to characterize by a CRC signature.
The node may have regular activity but there might be no signal
which can be used as a clock to gather a consistent signature. In
many such cases, nodes can be characterized by using transition
counts.

The transition count works on asynchronous signals. The
transition count can monitor information that the CRC will not
detect, such as extra transitions between CRC clocks. The
transition count will typically be a range of counts, defined by a
minimum and maximum, that represents the extremes of the
three measurements taken by the LEARN function. Only low-
to-high transitions are counted (not high-to-low). When the
measurement is synchronized to the external lines, the data input
is gated with the enable line, if used. A count of zero will result
if the enable-true window does not overlap the low-to-high
transition of the data.

The frequency of a signal may be more important than its CRC
or transition count. This is especially true for system clocks. If
a system clock is run at 4 MHz rather than 8§ MHz, everything
on the board could appear to be good. However, when the
board is plugged into a system, the board running at 4 MHz may
cause a system failure. Frequency is also important for video
signals such as horizontal and vertical sync.

7-7

Level history is an important characterization parameter when
combined with signatures or transition counts. If a faulty node
has the correct timing but swings between ground and an invalid
level for part of the time, measuring asynchronous level history
would detect this fault, which will be missed if only a CRC is
measured.

Consider the case where a node that should go high and low is
stuck on a faulty UUT. Using both CRC and asynchronous
level history to characterize the node will provide more complete
information to the technician who repairs the board. The
operator can see that the line is stuck when it should be
changing.

Level history can be used to detect glitches. If the measurement
period is set so that a signal is either high or low during
measurement, with no glitches, the level history will show only
high or low. If the level history shows both high and low, a
glitch has occurred.

Calibration of the I/0 Module and Probe 7.4.4.

7-8

Whenever the pod performs a microprocessor operation, it
generates a synchronization pulse which the 9100A/9105A uses
to measure signatures and clocked levels. The synchronization
pulse can be generated by several devices, including the pod or
an external clock.

In order for the system to measure critical signals reliably, each
measurement device (I/O modules and probe) must be calibrated
to this synchronization pulse on the system where it will be
used, since each measurement device contains its own
electronics that affect timing. If your tests must be accurate to
within a few tens of nanoseconds on signal edges, calibration
should be done.

The procedures for calibration are given in the Technical User's
Manual. Calibration should be performed for each measurement
device and for each synchronization mode of that device on the
particular 9100A/9105A system where it will be used. For

example, the probe for an 80286-based UUT should be
calibrated to EXT, POD ADDR and POD DATA on the
9100A/9105A where the probe will be used.

Calibration is UUT-dependent. For this reason, calibration
settings should be saved under the specific directory for that
UUT. If calibration is not performed, default calibration values
will be used. These default calibration values will only work
properly in some UUTs (those which have ample timing margin
or which operate at slow speeds).

Adjusting Sync Timing 7.4.5.

The sync pulse that the measurement devices (I/O modules and
probe) receive from the 9100A/9105A comes either from the pod
or an external clock signal. The pod may provide sync pulses
with different timings relative to microprocessor read/write
operations, depending on the synchronization mode of the pod.
For example, the 80286 pod has POD ADDR and POD DATA
sync modes. The sync pulse in POD ADDR mode is earlier than
in the POD DATA mode. See the timing diagram in the pod
manual for the pod you are using.

Most signals on a UUT can be characterized using the external
or pod sync mode. However, in some cases, the sync pulse
occurs at a different time than when the signal should be
measured.

The getoffset and setoffset TL/1 commands can be used to adjust
the time when a signature or clocked level measurement is made,
relative to the sync pulse. Figure 7-2 shows how this offset is
implemented in the probe or the I/O module. The data to be
measured passes through one delay line and the sync pulse
passes through a different delay line. One of the delay lines is
variable. By adjusting the variable delay line, the data is
measured at a different time relative to the sync pulse.

Section 3 of the TL/I Reference Manual contains details about
the getoffset and setoffset commands, including the
approximate timing resolutions of the probe and the I/O module.

7-10

Measurement Line
(Probe Tip or
/O Module Line)

Clock or
Sync Pulse

1/0 Moduile Line or Probe

Delay Line

Measurement
Hardware

Delay Line

Results of
Measurements

Figure 7-2: Synchronization-Pulse Delay Mechanism

Appendices C and E of the Technical User's Manual contain
additional timing specifications for the pod, probe, and I/O
modules. The Supplemental Pod Information for 9100A/9105A
Users manual and the pod manuals have more detailed
information about pods.

When a program adjusts the sync timing, the original timing
should be restored at the end of the program. This can be done
by storing the result of a getoffset command, adjusting the
timing with setoffset, and readjusting the timing with setoffset at
the end of the program with the stored getoffset value.

Dynamic RAM circuits usually require sync timing adjustment in
order to measure the RAS and CAS signals, which do not
necessarily coincide with the POD ADDR or POD DATA sync
pulses. The Demo/Trainer UUT stimulus programs for the
Dynamic RAM Timing functional block show one way to adjust
the sync timing.

THE UUT DESCRIPTION 7.5.

The UUT description, which provides the 9100A/9105A with
information used for GFI and UFI, consists of:

d Reference designator list (reflist).

® Part Library (part descriptions). A basic part library is
provided with the system.

® Node list (net list or wire list).

The Programmer’s Manual provides detailed information about
this database and how GFI and UFI use it. The following
sections are simply a brief overview.

Reference Designator List (REFLIST) 7.5.1.

The reference designator list establishes the relationship between
reference designators (such as "U80") and a part or component

type (such as 7410). It also specifies the testing device (probe
or I/O module) to be used on the component.

A sample Demo/Trainer UUT reference designator list is shown
in Appendix A. GFI and UFI both require the reference
designator list to determine the device needed to test a
component.

No distinction is made between families of components, such as
74LS00 or 74HCT00. The Fluke-supplied part library uses
generic names like 7400 and 7432, so when you make entries in
a reference designator list you will need to use generic names.

Part Library (Part Descriptions) 7.5.2.

The part library is a group of files (part descriptions) that
describe UUT components. A part description specifies each
pin to be an input, output, bidirectional, ground, power, or
unused. Each output has a list of related inputs which affect that
output. The library can be accessed through any UUT directory.
A basic part library is supplied by Fluke. You can add part des-
criptions, including custom designs.

See the Guided Fault Isolation section of the Programmer’s
Manual for examples of part descriptions.

Node List (Net List or Wire List) 7.5.3.

7-12

The node list specifies interconnections between reference
designators. The list is only necessary for GFI, which uses it to
backtrace between components.

A complete node list contains one line for each node in a UUT.
The pins on one line are all connected to form a node. Lines
may be continued on the next line with the backslash (V)
character.

@,

Appendix B contains a node list for the Demo/Trainer UUT.
Reviewing this example will be helpful to you when developing
you own node lists.

Bus-Master Pins in a Node List 7.5.4.

The 9100A normally determines the flow of data from the node
list; it assumes that data can be sent from any pin to any other
pin on a given node. However, sometimes two pins are
connected together by a node but do not actually communicate
with each other; this situation commonly arises in bus-oriented
systems with many components connected to a common
microprocessor data bus.

In such cases, you need to let GFI know that only some pins
(called bus-master pins) can communicate with all the other pins
on the same node. This is done by entries in the optional
*masters section of the node list.

The *masters section is optional, and for most UUT node lists it
can be omitted. Where it is needed, it usually contains just a
short list of pins, because most nodes have only a single source.
It is only for nets such as the one in the following example that
the *masters section becomes important.

Consider the node shown below: It consists of bit 0 of a
bidirectional data bus connecting several components to a
Microprocessor.

Micro- 15 Data Bus Bit 0
processor le— y y y y
&8 v2 ¢ 10 ¢ 11
RAM 1 RAM 2 ROM o
uz25
u18 ur2 ug us1

Only pin U25-15 can talk to all other input pins on the node and
only U25-15 can receive from all other output pins on the node.
Either condition would be sufficient to make U25-15 a bus-
master pin.

For this reason, pin U25-15 is shown as a bus-master pin in the
partial node list below. It is listed in the regular section of the
node list and is also included in the optional *masters section of
the node list.

U8-12 U3-9 U42-21
U25-15 U1l9-8 U22-2 U9-10 U31l-11
Ul7-4 U28-5 U27-6

*masters
U25-15

See the Node List section in the Programmer's Manual for more
information about bus-master pins.

Choice of Backtracing Path 7.5.5.

If there are two or more stimulus programs available for a node,
GFI will attempt to use the program that stimulates all of the
node's outputs (and related inputs) before using programs that
stimulate only some of the node's pins.

Here are three cases that relate to the AND gate in Figure 7-3.
Each case shows the test results from two stimulus programs, A
and B, and the conclusion that GFI comes to:

Micro-
processor

K 4 Buffer

Bus-Master

Pin

®

DMA

Circuit

TN ®
@2'

ROM

Bus-Master
Pin

Figure 7-3: Direction-Control Example

7-15

Case I: Input 1 Inpuz 2 Oumput 3

Stimulus Program A good good bad
Stimulus Program B — bad bad

GFI will accuse the node of being bad because stimulus
program A covers all the nodes and is therefore evaluated
first. In this case stimulus program B will not be

executed.

Case2: Input 1 Input 2 Output 3
Stimulus Program A bad good bad
Stimulus Program B - bad bad

GFI will test the component connected to input 1, again
because stimulus program A covers all the nodes and is
therefore evaluated first Therefore, GFI will backtrace to
the Bus Buffer.

Case 3: Input 1 Input 2 Output 3

Stimulus Program A good good good
Stimulus Program B - bad bad

GFI will test the component connected to input 2, because
stimulus program A finds no problem and the system goes
on to evaluate stimulus program B. Therefore, GFI will
backtrace to the DMA circuit.

Consider these two problems in Figure 7-3, in which both the
microprocessor and the DMA controller are both *master
components:

® If the problem is in the microprocessor, evaluation is the
same as for Case 2, above, and GFI troubleshooting traces
back to the microprocessor from input 1 of the AND gate.

A If the problem is in the DMA controller, evaluation is the
same as for Case 3, above, and GFI troubleshooting traces
back to the DMA circuit from input 2 of the AND gate.

While you can effectively steer GFI by designing stimulus
programs to cover all or only some inputs and outputs, you do
not usually need to worry about control of the backtracing path;
it is only needed in special circumstances.

Normally, you should design stimulus programs that test all
inputs and outputs of a node or component. If there is no single
stimulus program that covers all inputs and outputs, the
9100A/9105A uses these criteria to determine status:

¢ If ANY stimulus program gives a BAD response on a pin,
the pin is considered BAD.

¢ If ALL stimulus programs give GOOD responses on the
pin, the pin is considered GOOD.

® Otherwise, the pin is considered UNKNOWN.

SUMMARY OF GFI COVERAGE 7.6.

The 9100A provides a convenient means to check the
completeness of the information you have entered into the GFI
database for a particular UUT. When viewing the UUT
directory display, you can press the SUMMARY softkey to
request generation of a summary of GFI coverage for that
particular UUT. The compiled database (GFIDATA or
UFIDATA) will be examined and a summary will be generated,
displayed on the monitor, and stored in a UUT text file that you
specify. If you press the Shift key on the programmer's
keyboard and the SUMMARY softkey, the summary will appear
on the monitor without sending a copy to a text file.

Creating a Summary of GFI Coverage

The following procedure is used to generate a Summary of
GFI Coverage for a UUT:

1. Press the EDIT key on the operator's keypad to enter
the Editor (unless you are already in the Editor).

7-17

7-18

2. Use the EDIT key on the Programmer's Keyboard to
enter the name of the UUT so that the UUT directory
for this UUT is displayed on the monitor. The UUT
directory you have selected must contain a compiled
database (either GFIDATA or UFIDATA).

3. Press the SUMMARY Softkey (F8) and the 9100A
will issue the prompt shown below to ask for a text
file name:

Generate GFI Summary to TEXT file

The Summary of GFI Coverage to be generated will
be stored in this text file.

4. Type in the text file name you wish and press the
Return key. The 9100A will then begin generating
the Summary of GFI Coverage for the UUT and will
display the results on the monitor.

When the generation is complete, the following message will
appear on the monitor:

Press Msgs key to continue

When you press the Msgs key on the programmer's keyboard,
the UUT directory display will reappear on the monitor. You
can use the Edit key on the programmer's keyboard to access the
text file you generated.

@,

Statistical Summary

The first part of the Summary of GFI Coverage is a statistical
summary of the UUT, based on the GFI database you have
provided. Figure 7-4 shows a typical example of such a
summary. Each entry in the summary is described below:

¢ Summary for /<disk drive>/<UUT>: In Figure 7-
4, HDR is the disk drive and the UUT directory name is
EXAMPLE.

¢ Parts: The number of unique part types in the UUT,
based on the reference designator list.

¢ Reference Designators: The number of reference
designators in the UUT, based on the node list.

® Connected Pins: The number of UUT pins that are
connected to other pins on the UUT, based on the node
list.

¢* Unconnected Pins: The number of UUT pins that are
not connected to any other UUT pins, based on the node
list.

®* Total Pins: The total number of pins on the UUT.

¢ Programs: The number of TL/1 programs that can be
used by GFI as stimulus programs. This number is equal
to the number of response files.

i Testable Connected Pins: The number of connected
pins that can be tested by GFI. Testable pins have either
been characterized with LEARN, or are a member of a
node that has been characterized with LEARN.

¢ Testable Unconnected Pins: The number of
unconnected pins that can be tested by GFI. Testable
unconnected pins have been characterized by LEARN and
appear in a response file.

¢ Total Testable Pins: The total number of UUT pins
that can be tested with GFI, given the database you have
entered.

7-19

7-20

Summary for /HDR/EXAMPLE:

53
167
1694
225
13819
42

1688
16
1704

6
209
215

99%
88%

Parts

Reference Designators
Connected Pins
Unconnected Pins
Total Pins

Programs

Testable Connected Pins
Testable Unconnected Pins
Total Testable Pins

Untestable Connected Pins
Untestable Unconnected Pins
Total Untestable Pins

Test Coverage of Connected Pins
Test Coverage of Total Pins

Figure 7-4: Statistical Summary Display for a UUT

A Untestable Connected Pins: The number of
connected pins that cannot be tested with GFI, due to an
incomplete database.

® Untestable Unconnected Pins: The number of
unconnected pins that cannot be tested with GFI, due to an
incomplete database.

¢ Total Untestable Pins: The total number of UUT pins
that cannot be tested with GFI, given the database you
have entered.

¢ Test Coverage of Connected Pins: The percentage
of connected pins on the UUT that can be tested with GFI,
given the database you have entered. A figure of less than
100% indicates an incomplete database.

¢ Test Coverage of Total Pins: The percentage of
UUT pins that can be tested with GFI, given the database
you have entered. This figure is typically less than 100%
because a UUT often has unused pins.

Pin Coverage

The second part of the GFI Summary of Coverage display is a
matrix showing how component pins are tested with the
database you have provided. Figure 7-5 shows a partial
example of a pin coverage matrix. The matrix is organized with
the reference designators listed vertically (in the left-most
column) and with component pin numbers listed horizontally.
The number of pins per line will be the number required by the
largest component in the list. If more than 35 pins are required,
the display will produce a second list of reference designators
following the first list and this second set will have pin numbers
starting with 36 and continuing up from there.

Each component pin has a one-character symbol that shows how
GFI looks at the pin given the database you have provided. The
table at the bottom of Figure 7-5 shows the meaning of each
symbol that is possible:

7-21

Pin Coverage:

11111111112222222222333333

12345678901234567890123456789012345
Cl3 T O v v v o s o 4 s o o s a o & 2 a o & 2 s o« 2 a 2 a » = 2 « « o« a =
Cle T I . o v v v @ @ 2 o o & = » « « 28 » « 5 5 o o s s o o s 2 o v o ==
Cl7 T O v v v v v 6 o & o o = o = o o = = = & = = 2 2 2 & 2 » « « « « a
J5 I ** I T ***T1T+*** T JTIIIIIIIIIIIIIITIIIIIII
J6 I I I T T oo v v v o o a o a = a » «a «a =5 2 « a = = 2 » o« « =« « = « =
QL O I T o v o o o o a o o 2 = o 2 2 = o = 2 = o « = s s s s o o« a o o &«
02 O I T . i v o v o o o o o o « o o o = & a 2 = s a = 2 2 2 o« « « « « =«
RIO O T . 4 i 4t a s s e o n s o s s 5 o = 5 s o o s a a = s o « « = = =
RII IO & & 4 4 o @ o = o o« = o = = » = = 2 2 2 2 « 2 2 2 » 2 « « « « =« =
RIZ T O . v v 4 v v o s = = o o o« 2 a 2 = a 2 2 o « = v o o = = s o o = =
Bl I T . & v i i v v e a o s s o o s o s o a 2 « a4 = = » 2 s 2 « « = o«
7 e
U0 ITIITIBIIBIIBIIBBIIBI .. et oo oo e «aeaom=
U1 *# I * T I II*III*O0O0O0O*OCBBBBI*OBBBB®*®**x*Q*xT]
Ul2 OOIOIOOIOIIOIOTII . v oo oo o v o a a2 o s » o= «=
Ul3 TOIOIOGOIOIOIP .o oo s oo o o a a a2 2 s 2 2 ««o=
Ul4 O* * 00 *** T ** 0000000000000 0000IIIOCOI
Symbol Meanin

I The pin is testable as an input only.

0] The pin is testable as an output only.

B The pin is testable as both an input and an output.

P The pin is testable as a power pin.

G The pin is testable as a ground pin.

*

The pin is not testable (because it has no associated
stimulus program or no known-good
response stored for this pin).

There is no such pin in the database.

Figure 7-5: Pin Coverage Display for a UUT

7-22

O

FAULT CONDITION EXERCISERS 7.7.

When the 9100A/9105A detects a fault, and a fault condition
handler is not defined for the fault condition raised, a fault
message will appear on the operator's display. At this point, the
operator can press the LOOP key on the operator's keypad to
repeatedly reproduce the fault so that it can be isolated manually.
To do so requires that a fault condition exerciser exist for the
fault condition that was raised. If the exerciser exists, it is
invoked continually until the operator presses the STOP key on
the operator's keypad.

A fault condition exerciser is a software block designed
specifically to reproduce a fault condition in a UUT. Two types
of exercisers are available: built-in exercisers and user-defined
exercisers.

When a fault condition is raised by a built-in stimulus function
(such as read, write, ramp, toggle, or rotate) or a built-in test
function (such as testbus, testramfast, testramfull, or
testromfull), the 9100A/9105A has a pre-defined sequence of
commands that exercise the fault when the LOOP key is pressed.
These are called built-in fault condition exercisers. In addition,
you as a programmer can write your own fault condition
exercisers for fault conditions that you define or to replace the
built-in fault condition exercisers. When one of these fault
conditions is encountered and the LOOP key is pressed, the fault
condition exerciser with the matching name is invoked.

If a fault condition exerciser for the displayed fault condition is
found when the LOOP key is pressed, the fault condition
exerciser is invoked repeatedly to stimulate the UUT. This
allows the probe to be used to examine node responses in the
circuit and to trace faulty circuit operation to its cause.

7-23

REPAIR AFTER TROUBLESHOOTING 7.8.

7-24

When GFI terminates, it will often display one of the following
messages:

* Open circuit.
¢ Bad IC or output loaded.

When GFI reports an open circuit, it has found an input which is
bad even though the signal source on that node is good. To
repair the node:

1. Retest both ends of the node to make sure the output
was properly probed.

2. Confirm the open circuit with an chmmeter.

3. Trace along the node with the ohmmeter until the
open point is found.

4. If the node is connected properly, check for:

- An error in the node list entry for the failed node.

- Marginal measurements due to the frequency or
timing of signals on the node. Ringing may be
occurring on the node, or the time between the
sync and the signal transitions may be marginal.
Change the stimulus setup or the sync timing to
correct the problem (see Section 8.5 on adjusting
sync timing).

When GFI reports a bad IC or output loaded, it has found all
good inputs and one or more bad outputs. In this case,
determine whether the part is bad or the output is loaded. To do
this, test the component by overdriving its inputs with the I/O
module while measuring level history or CRC signatures.

In doing so, determine whether:

The level history showed that the line went to a high and
low state. If so, the node is only loaded part of the time,
or the component is bad.

The node is loaded. If the component is good but the node
is bad, the node must be loaded. The cause of a loaded
node can be:

A short to another node, the power supply, or
ground.

A damaged IC loading the node. Example 1 in
Figure 7-6 shows a bad input at U6 causing node
A to be loaded.

Another output source is also driving that node.
Check the enable and control lines of any other
devices that can drive the node. Example 2 in
Figure 7-6 shows node A to be loaded because
both U1 and US are attempting to drive the node
at the same time. U1 is operating as it should but
the U5 enable-line state is incorrect and US5 is
also driving the same node.

Operators should be provided with a procedure for tracing short
circuits. For example, a milliohmmeter can be used to determine
the point at which a node is shorted. To do this, attach one lead
of the milliohmmeter to the faulty node. With the other lead,
look for low resistance paths.

7-25

U

I

Shorted 1o
= Inside Us

Enabled

Bad

Input ——4¢

Disabled

Example 1: Bad IC

Enabled

T

Bad
y

Input —4¢ ”r—

3

‘

Disabled

Example 2: Bus Contention

Enabled

Ground

Disabled

Enabled
Output

Disabled

Enabled

Enabled <—— Incoming Level on Enable
Line Causes Bad Node
Enabled

Output

Disabled

Figure 7-6: Node Loading

7-26

Section 8

Glossary

If you cannot find a term in the glossary, search the index for a
reference to that term.

Active Edge
A signal transition used to initiate action.

Address Space

A section of memory reserved for a particular use, such as the
stack. The term "decoded address space" implies memory
residing in physically separate chips (selectively enabled by a
"decoder"), such as a frame buffer, character generator, or the
control registers inside a peripheral chip.

Aliasing
A condition where a component address responds to more than
one combination of address bus bits.

Assert
To cause a signal to change to its logical "true" state.

Asynchronous

Not synchronized to the microprocessor or not synchronous to
any clock signal.

8-1

8-2

Automated Test
An automated activity that verifies the correct operation of a
circuit by comparing its output to the expected output.

Automated Troubleshooting
An automated process of locating a fault on a UUT.

Backtracing

A procedure for locating the source of a fault on a UUT by
checking logic along a logical path from bad outputs to bad
inputs until the point where no bad inputs are found.

Bus
A group of functionally similar signals.

Bus Contention
A situation where two or more bus devices are trying to put
different data onto the same bus.

CAD
An acronym for Computer-Aided Design. CAD systems let the
user create, manipulate, and store designs on a computer.

Comment
Text in a program that is not executed. A comment in a TL/1
program or a node list must begin with an exclamation point (!).

Component
A passive or active part on a UUT.

Control Line
A signal that comes out of a microprocessor and is used to
control the UUT.

CRC Signature

CRC is an acronym for Cyclic Redundancy Check. A CRC
signature is a compression of a long data stream into a 16-bit
number.

Cursor
A symbol on a display (usually a box or an underscore) that
indicates where a typed character will appear.

Data Bus
A set of signal paths on which parallel data is transferred
between two or more devices.

Device

1. Refers to the probe, an I/O module, a reference designator,
or the pod. 2. Also used with I/O operations to specify a port
or a disk drive.

DIP
An acronym for Dual In-line Package. A DIP has an equal
number of pins on each of its long sides. See also SIP.

Directory
A collection of related sets of data (files, for example) on a disk.

Drivability
Testing whether lines can be driven to the appropriate active high
or active low level.

Dynamic Coupling
Data in one memory location is affected by combinations of data
in other memory locations.

Edge
The transition from one voltage level to a different voltage level.

Exerciser
See Fault Condition Exerciser.

External Synchronization
Synchronizing a node response measurement using signals
external to the pod.

Fault
A defect in a UUT that causes circuitry to operate in a manner
that is inconsistent with its design.

Fault Condition

A recognition by the 9100A/9105A that a fault exists on the
UUT.

8-3

8-4

Fault Condition Exerciser

A group of statements that attempts to repetitively reproduce the
conditions that generate a fault condition. (Sometimes called just
an "exerciser.")

Fault Condition Handler
A group of statements that is executed when a particular fault
condition occurs. (Sometimes called just a "handler.")

Fault Condition Raising
The generation of a fault condition either from detecting a fault
on a UUT or from using a TL/1 fault statement.

Feedback Loop
A circuit in which one or more outputs is routed to the circuit's
input.

Forcing Line
Input to the microprocessor that forces it to a particular known
state.

Functional Test
An activity that verifies the correct operation of a circuit by
comparing its output to the expected output.

GFI
See Guided Fault Isolation.

GFI Summary
A record of the components that have been tested by GFL

Go/No-Go Test
A pass/fail test; either a unit passes or it doesn't.

Guided Fault Isolation
An algorithm that uses backtracing to troubleshoot a UUT.

Handler
See Fault Condition Handler.

Hexadecimal
Pertaining to the base 16 numbering system. (Often abbreviated
as "hex.")

/0

An abbreviation for Input/Output. The transfer of data to and
from devices other than the local memory of the microprocessor
system.

I/O Module
An option for the 9100A/9105A that allows simultaneous
stimulus or response for multiple points on a UUT.

Level History

A character string that represents a record of the logic levels
measured at a point over a period of time. "1", "X", and "0"
represent high, invalid, and low states, respectively.

Library

A directory that contains a collection of only a particular type of
file. The 9100A/9105A uses four libraries: a part library, a
program library, a pod library, and a help library.

Mask
A value where each logic "1" represents a bit that is to be acted
on.

Monitor
A 24-line, 80-column video display that connects to the rear
panel of the 9100A/9105A.

Node
A set of points that are all electrically interconnected.

Node List
A file containing a description of the interconnection of all pins
on a UUT.

Operator

1. A symbol that acts on one or more values or expressions to
produce another value. 2. A person who uses the 9100A/
9105A for testing or troubleshooting.

8-5

8-6

Operator's Display
Three-line display on the mainframe of the 9100A/9105A.

Operator's Interface ;
The operator's display and the operator's keypad.

Operator's Keypad
The set of keys on the front panel of the base unit of the
9100A/9105A.

Overdrive

To put a logic state on a signal line by applying more power than
the normal driver for that node. This is how the 9100A/9105A
injects signals into the UUT.

Part Description
A file that describes a component on a UUT.

Part Library
A library of part descriptions.

Pod Library
A library of pod descriptions, each of which contains a pod
database and pod-related TL/1 programs.

Pod Synchronization
Synchronizing a node response measurement using signals
generated by the pod to indicate the sampling time.

Priority Pin
A pin that the GFI program will test first if a particular node is
bad.

Probe
A hand-held device that can stimulate and measure any single
point on the UUT.

Program Library
A library of programs that can be called by any program in the
userdisk.

Programmer's Interface
The monitor and the programmer's keyboard.

Programmer's Keyboard
The keyboard that connects to the side panel of the 9100A.

Raise
See Fault Condition Raising.

Reference Designator
A one to ten character string naming a component on the UUT.

Related Input Pin
An input pin on a component that affects an output pin on that
same component.

Response File

A file containing data generated by executing a specific stimulus
program to a UUT and recording the responses from its
execution.

RUN UUT Test
A feature that allows the normal operation of a UUT using its
own program.

Signature
See CRC Signature.

S1P
An acronym for Single In-line Package. See also DIP.

Softkey
A key that has its function determined by software.

State Machine

A circuit which produces output signals in response to input
signals and its own internal state. Typically used to generate a
sequence of control signals, as in a bus interface.

8-7

8-8

Stimulus Program

A program that exercises a circuit while the activity on circuit
nodes are recorded to see if the circuit produces the same
response as a known-good circuit.

String
A group of characters enclosed in double-quote characters (")
and manipulated as a single entity.

Synchronous
Coordinated to the transitions of a clock signal.

Termination Status
An indication of whether a UUT passed a test.

Timeout
A condition in which an expected event has not occurred within
the expected time period.

Toggle
Change to the complementary logic state.

Transition Count
A record of the number of times the logic level at a node changes
from low to high within a period of time.

Troubleshooting
A process of locating the area of a UUT that is causing a fault.

Userdisk

1. A diskette containing test programs and information about a
particular UUT. 2. The current disk drive that is used as a
source for UUT programs and data.

UUT
Unit Under Test. A physical item, i.e., a board or a system to
be tested.

UUT Directory
A set of files that contain information about a particular UUT.

Wait State
A bus cycle which is too short for a slow chip is lengthened by
the insertion of one or more clock cycles, called wait states.

Watchdog Timer

A circuit which produces a signal, typically a reset or high-
priority interrupt, if a timeout condition is met. For example, an
excessive number of wait states may trigger a watchdog timer.

Wildcard
A symbol that represents any sequence of characters. The
9100A/9105A uses the asterisk character (*) for this purpose.

Window

An area of the monitor reserved for certain information to be
displayed.

8-9

(This page is intentionally blank.)

8-10

Appendix A

Demo/Trainer UUT
Reflist

NAME: REFLIST

DESCRIPTION: SIZE: 3,555 BYTES
TESTING
REF PART DEVICE
R72 RESISTOR PROBE
R73 RESISTOR PROBE
R4 RESISTOR PROBE
R79 RESISTOR PROBE
R78 RESTSTOR PROBE
R61 RESISTOR PROBE
R62 RESISTOR PROBE
R63 RESISTOR PROBE
R64 RESISTOR PROBE
R65 RESISTOR PROBE
R70 RESISTOR PROBE
C4 CAPACITOR PRORE
Ch CAPACITOR PROBE
c8 CAPACITOR PROBE
Cc9 CAPACITOR PROBE
cl3 CAPACITOR PROBRE
C1l5 CAPACITCR PROBE
Cle CAPACITOR PROBE
cl7 CAPACITOR PROBE
u74 2016 I/0 MODULE
Uu8s 2016 I/0 MODULE
Uui12 2674 I/0 MODULE
Uu78 2675 PROBE
U1l 2681 PRORE
u77 27128 1/0 MODULE
u30 27256 I/0 MODULE
A-1

U29
U28
U217
0l

Q2

C1l

R35
R1

R77
R8O
R15
R14
R1l6
R13
R17
R12
R18
R11
R27
R25
R24
R28
R29
R23
R30
R19
R68
R69
R20
R21
R22
R34
R33
R3

R5

R6

R7

R8

R32
R31
R26
R9

R2

U34
U35
U36
U37
U38
U39
U40

27256
27256
27256
TRANSISTOR
TRANSISTOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTCR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
4164
4164
4164
4164
4164
4164
4164

I/0
I/0
I/0

MODULE
MODULE
MODULE

PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0
1/0
I/0
I/0
I/0
I/0
I/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

U4l
U48
U49
U50
Us1
U52
Us3
U54
U55
R67
Cé6

Cc7

R71
R10
R66
Ul4
J5

Ul

Ul5
U3l
U58
u24
Us

Ue4d
Us7
ulo
U4

Ue3
Useé
U21
U8

U9

U3

U23
U44
CR1
J2

J3

J6

U73
U83
Ug4
Ues
U66
U033
u47
Uel
u70
U7l
Ue2

4164

4164

4164

4164

4164

4164

4164

4164

4164
RESISTOR
CAPACITOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
80286
CONN68
82284
82288
8255

7400

7400

7400

7402

7404

7404

7408

7408

7410
74138
74138
74138
74245
74245
7474
DIODE
CONN_RS232
CONN_VIDEO
CONN_KEYBD
74157
74157
74157
74257
74257
7SEGLED
7SEGLED
7400

7400

7400

7404

1/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PRORBE

PROBE

PROBE

PROBE

PROBE

PROBE

PROBE

I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PROBE

PROBE

PROBE

I/0 MODULE
I/0 MODULE
I1/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE

PROBE

I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE

A-4

U59
U8o
Usl
07

U25
U26
U20
U1l3
U43
Ul7
u75
Ues
ue9
U32
U4e
Ue

Uu79
Ue60
U45
91213
u87
Ulo0
U2

Ule
022
U76
U42
ue’7
Ulz2
J4

Uls
Ug2
uss
Y1

54

S3

52

Sl

56

DSl
z1

74109
7410

7410
74112
74112
74125
74148
7414
74164
74164
74175
74244
74244
74244
74244
7430

7430

7431

7432
74373
74373
74373
74374
74374
74374
74374
74390
74590
MAX232
PWRCONN
OSCILLATOR
74175
7486

XTAL
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
LED
NETWORK10

I/0

MODULE

PROBE
PROBE

1/0

MODULE

PROBE

I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I/0
I1/0
I1/0
1/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0

MODULE

Appendix B
Demo/Trainer UUT

Node List

NAME: NODELIST
DESCRIPTION: SIZE: 16,492 BYTES

U23~11 U41-2 U69-17 U30-11 U28-11 U41-14 2z1-10
U23-12 U40-2 ©U40-14 U69-15 U30-12 U28-12 21-9
U23-13 U039-2 U39-14 U69-13 U30-13 U28~13 Z1-8
U23-14 U38-2 U38-14 U69-11 U30-15 U28-15 21-7
U23-15 U37-2 U37-14 U69-8 U30-16 U28-16 2Z1-6
U23-16 U36-2 U36-14 U69-6 U30-17 U28~17 2Z1-5
U23-17 U35-2 U35-14 Ue69-4 U30-18 U28-18 21-4
U23-18 U34-2 U34-14 U69-~2 U30-19 U28-19 21-3
U58-8 U34-15 U35-15 U36-15 U37-15 U38-15 U39-15 U40-15 U41-15
R69-1 R72-1 U88-8

U84-6 U72-32

R14-1 U46-12

R13-1 U46-14

R12-1 U4de6-16

R11-1 U46-18

R18-1 U46-3

R17-1 U46-5

R16-1 U46-7

R15-1 U46-9

U32-11 U31-40

R27-1 U32-9

R25-1 U32-12

R24-1 U32-14

R23-1 U32~1¢

R19-1 U32-18

R30~1 U32-3

U32-13 U31-39

R28-1 U32-7

U32-15 U31-38

B-1

R29-1
U32-8
R27-2
R19-2
U2-5
Ug4-3
U84-10
Ul6-15
U28-
Ul1-36
U11-37
Ul6-19
U70-11
uz22-9
Ue5-1
U3-18
U29-
U2-6
R25-2
R24-2
R23-2
R29-2
U32-6
U32-2
U32-4
Ud6-11
R12-2
R17-2
R13~-2
R14-2
R15-2
R11-2
U58-2
U6l1-1
Uel-4
U43-11
U6l-6
U6l-3
U70-3
U70-6
U70-8
U56-10
U75-5
U68-3
U68-5
U68-14
U76-6
U76-5
U88-9
U87-13

B-2

U32-5
U31-1
U33-7
U33-1 4
U66-6 U21-2 U30-26 U29-26 U28-26 U27-26
U72-31
U72-33
U65-5 UB4-11 Ull-4 U72-38 U31-8 U30-9 U
9 U27-9
Y1-1 C8-1
Yi-2 c9-1
U61-9 U21-4 U62-9 U62-11
U81-5
U61-10 US57-13 U62-13
U66-1 U60-7
U48-2 U48-14 U68-2 UL0-19 ULl-21 U72-15
19 U27-19
U66-3 U21-1 U30-2 U29-2 U28-2 U27-2
U33-8
U33-10
U33-13
U33-11
U31-2
U31-4
U31-3
U31-22
U47-13
U47-11
U47-10
U47-8
U47-17
U47-1
U8-14
U62-12
U62-10
U61-12 U67-11 U67-13 U44-1 U44-13 U59-13
U68-1 U68-19 U74-21
U69-1 U69-19 U85-21
U71-2
u71-4
U71-5
U21-15 U72-2
U83-10 U72-29
U74-9 U77-6
U74-10 U77-5
U74-15 U77-24
U78-4
U78-36
U78-29
U77-16

29-9

U31-27%

\

U87-8 U77-15

ug7-17 U77-18

ug7-7 U77-13

U87-18 U77-19

U75-2 U77-10

u75-7 U77-9

U75-10 U77-8

U86-19 U78-19

u87-14 U77-17

U87-3 U77-11

ug7-4 U77-12

Ug86-15 U78-17

U86-16 U78~16

Uuge-12 U78-25

Uge-6 U78-18

U69-9 U86-13 U85-13

U69-18 U85-17 U77-26

U72-23 U78-11

U69-12 U86-8 U85-14

Uso-8 UB81-13

U80-10 U81-10 U8B2-6

Ugo-12 U8l-1

Ugo0-2 U70-5 U71-12 U81-4 U82-15

U80-4 U70-9 U81-11 U82-10

U80-6 U81-2

U80~11 U79%-11 UB82-14

U80-5 U79-4 Ue62-2

Ug0-3 U70-13 U79-5 UB81-9 U82-3 U73-1 U83-1 UB4-1 U6E2-5

U70-12 U76-11 1U79-3 U86-~11 U87-11 U72-16 U78-33

U71-13 U79-6 U81-3 U82-11

U22-5 U21-6

U83-9 U74-3 U85-3

U3~-11 U55-2 U55-14 Ué8-17 Ul0-2 Ull-28 U72-8 U31-34 \
U29-11 U27-11

U32-17 U31-37

U2-15 Ue65-6 U73-11 U30-24 U29-24 U28-24 TU27-24

Ul6-5 Ue66-5 U83-11 U30-5 U29-5 U28-5 U27-5

U46-13 U31-23

U46-8 U31-21

U2-9 U65-13 U30-23 U29-23 U28-23 U27-23

U27-22 U6-5 U45-3 U28-22

U34-4 U35-4 U36-4 U37-4 U38-4 U39-4 U40-4 U4l-4 U48-4 \
U49-4 U50-4 U51-4 U52-4 U53-4 US4-4 U55-4 U64-8 U63-8

U34-5 U35-5 U36-5 Ueb-4 U67-15 U37-5 U38-5 U39-5 U40-5 \
U41-5 U48-5 U49-5 1US0-5 U51-5 U52-5 U53-5 U54-5 U55-~5

U34-6 U35-6 U36-6 U65-9 U67-2 U37-6 U38-6 U39~-6 U40-6 \
U41-6 U48-6 U49-6 U50-6 U51-6 US52-6 U53-6 US54~6 TU55-6

U34-7 U35-7 U36-7 U65-7 Ue7-1 U37-7 U38-7 U39-7 U40-7 \
U41-7 U48-7 U49-7 U50-7 U51-7 US52-7 U53-7 US4-7 U55-7

U34-3 U35-3 U36-3 U37-3 U38-3 U39-3 U40-3 U41-3 1U48-3 \

B-3

U49-3 U50-3 U51-3 U52-3 US53-3 U54-3 U26-8 US5-3

U34-12 U35-12 U36-12 U65-12 U67-3 U37-12 1U38-12 U39-12 \
U40-12 U41-12 U48-12 U49-12 U50-12 U51-12 U52-12 U53-12 \
U54-12 US5-12

U34-11 U35-11 U36-11 U66-4 U67~-4 U37-11 U38-11 U39-11 \
U40-11 U41-11 U48-11 U49-11 US50-11 U51-11 U52-11 U53-11 \
U54-11 U55-11

U34-10 U35-10 U36-10 U66-7 U67-5 U37-10 U38-10 U39-10 \
U40-10 U41-10 U48-10 U49-10 U50-10 U51-10 U52-10 U53-10 \
U54-10 U55-10

U34-13 U35-13 U36-13 U66-9 U67-6 \
U37-13 U38-13 U39-13 U40-13 U41-13 U48-13 U49-13 U50-13 \
U51-13 U52-13 U53-13 U54-13 U55-13

U58-11 U48-15 U49-15 U50-15 U51-15 U52-15 U53-15 U54-15 \
U55-15

Ue-2 U8-11

U6-3 U8-10

U5-10 Ul1-9 U72-3 U31-36 Ul5-1l

U57-2 U5-13

U83-12 U74-4 U85-4

U6-11 U81-8

Ulé-2 U66-11 U83-5 U30-4 U29-4 U28-4 U27-4

U43-9 U56-12

U2-12 U65-10 TU73-5 U30-21 U29-21 U28-21 U27-21

U56-1 U44-9 Ue4-12

U34-9 U35-9 U36-9 U66-12 U67-7 U37-9 U38-9 U39-9 U40-9 \
U41-9 U48-9 U49-9 U50-9 U51-9 U52-9 U53-9 U54-9 U55-9

Us56-9 U21-14 U11-39

U46-15 U31-24

Ud46-17 U31-25

U76-15 U78-38

U75-15 U77-7

U68-14 U86-7 UB5-15

U45~1 U45-4 US56-3 U79-2 U57-1 Ul5-8

U45-5 U9-9 U30-20 U29-20

U2-16 U65-3 U73-14 U30-25 U29-25 U28-25 U27-25

U2-19 Ue6-14 U83-2 U30-3 U29-3 U28-3 U27-3

Ude6-6 U31-20

U46-4 U31-19

U46-2 U31-18

Ul6-6 U66-2 U83-14 U30-6 U29-6 1U28-6 U27-6

U3-14 U52-2 U52-14 Ueé8~11 Ul0-9 Ul1l-19 U72-11 U31-31 \
U29-15 U27-15

U3-13 U53-2 U53-14 U68-13 U10-6 U1l-27 U72-10 U31-32 \
U29-13 U27-13

Ugg-4 U78-28

Ug2-1 Ul13-10

U3-15 U51-2 US51-14 Ué68-8 U10-12 Ull-26 U72~-12 U31-30 \
U29-16 U27-16

U22-4 J5-66 Ul4-66

U22-14 J5-13 Ul4-13

U22-18 J5-15 Ul4-15

U2-4 J5-17 Ul4-17

U22-13 J5-12 Ul4-12

U22-17 J5-14 Ul4-14

Ul4-52 C4-1

J5-52 Cl13-1

Ul6-8 J5-27 Ul4-27

ule-7 J5-26 Ul4-2¢6

Ul6-13 J5-28 Ul4-28

Ul-10 Ul17-8 U44-3 U44-11
U7-1 U13-1 Ul14-31 Ulb-2

Ulée-14 J5-32 Ul4-32

Ulée-18 J5-34 Ul4-34

R1-2 Ul-4 U19-1 J5-63 U4-

U23-2 J5-51 Ul4-51

U23-3 J5-49 TUl4-49

U3-2 J5-50 U14-50

U3-6 J5-42 Ul4-42

U23-4 J5-47 Ul4-47

U23-5 J5-45 Ul4-45

U23-6 J5-43 Ul4-43

U23-8 J5-39 U14-39

U2-11 Ule-11 U22-11 U7-2

U56-5 U1l1-10 U72-1 U31-5

Ulé-16 U65-2 U84-14 TUll-2
U28-10 U27-10

U23-9 J5-37 U14-37

U26-1 Ul13-4 U13-13 Ul4-64

U3-5 J5-44 Ul4-44

U22-8 J5-1 Ul4-1

U23-7 J5-41 U1l4-41

U3-9 J5-36 Ul4-36

J5-64 Ul3-12

U3-8 J5-38 U14-38

U3-7 J5-40 Ul4-40

U2-8 J5-19 U14-19

U2-2 Ue66-10 U21-3 U30-27

U3-3 J5-48 Ul4-48

U2-18 J5-23 U14-23

U3-4 J5-46 Ul4-46

Ug84-12 U74-8 U85-8

U84-9 U74-7 U85-7

Ul-16 J5-4 Ul4-4 U15-3

R26-1 U13-3

Ule-12 Ue5-11 U84-5 Ull-6
U27-8

Ue-4 U45-6 U30-22 U29-22

U21-13 U4-10 U31l-6

U3-12 U54-2 U54-14 U68-15

U59-4

12 Ul4

Ul5-5
Ul5-12
u72-37

U28~27

U72-39

Ul0-5

J5-31 \

-63 Ul5-1
U31-9 U30-10
U28-27 U27-21
U30-8 U29-8
Ul1l-18 U72-9

U29-10

U28-8

U31-33

\

U29-12 U27-12
R5-1 Ss1-1 1U31-14
R6-1 52-1 U31-15
R7-1 83-1 U31l-16
R8-1 s4-1 U31-17
U56-8 U5-5
Ues8-7 U74-11 U77-4
U71-3 U82-4
Ul6-9 U65-14 U84-2 Ull-7 U30-7 U29-7 U28-7 U27-7
U61-13 U58-6 U59-2 1U59-3 Ue60-1 U63-9
U58-12 U62-8
U56-13 U59-12 Ul13-2
U65-15 Ue66-15 U44-5 U44-12
U2-7 J5-18 Ul4-18
Ul-12 U1%-3 J5-29 Ull-38 U13-11 U31-35 Ul4-29
Ul-15 J5-5 Ul4-5 U1l5-19
Ug4-4 U74-5 UB5-5
U84-13 U72-34
U88-13 U72-18
Usg-1 U72-19
U73-13 U72-26
U73-10 U72-25
u72-7 U78-8
U83-7 U74-2 U85-2
U83-4 U74-1 U85-1
U6-8 US5-1
Ul3-5 U13-8
R33-1 U20-4
U76-9 U78-37
R20-1 R21-1 R22-1 Ul2-2
U19-2 U7-3
U43-8 U42-3
U86-9 U78-14
Ul7-9 U4-11 U5-2
U7-5 U8-4
Ul9-4 U7-15
U45-9 US56-6
U84-7 U74-6 U8B5-6
U20-6 U10-7
U76-19 U63-4 U63-13
U20-2 Ull-24 R3-1
U76-16 U63-5 U78-2
U69-7 U86-14 U85-11
U8-13 U62-1
U45-10 U5-8
U75-9 Ue62-4
U63-6 U78-39
U76-2 U63-12 U78-5
U80-9 U80-13 U70-1 U70-4 U70-10 UB2-2
Usl-12 U82-12

B-6

U68-16 U74-16 U77-21

U75-13 U83-3 U72-27

Ue8-12 U74-14 U77-25

U57-6 U5-12

U69-5 UB6-17 U85-10

U69-16 U85-16 U77-2

J2-2 U12-7

J2-3 Ul12-13 R21-2

Ul1-13 U42-4

U25-1 U25-9 U78-32

Ug80-1 Ue6l-2 Uel-5 U70-2

U71-9 U79-8

U60-2 U60-5 U60-15

U20-9 Ul0-3

U20-7 U10-4

Ul1-13 Ul2-10

R34-1 U25-15

Ue63-11 TU78-6

U76-12 U78-3

U68~-18 U74-17 U77-23

U69-3 U86-18 U85-9

U75-4 U83-13 U72-30

U75-12 U83-6 U72-28

U73-6 U72-24 U78-13

U4-5 U5-6

U4-1 U5-11

Ul1-35 Ul3-6

Ull-5 Ul2-9

U60-14 U1l9-5

U44-2 U64-13

Ull-14 Ul2-11

U4-2 U5-9 U15-13

U57-4 U9-5

Us57-2 Ul5-16

U22-12 U57-3 U8-5

U20-12 ©Ull-15 R2-1

U3-17 U49-2 U49-14 U68-4
U29-18 U27-18

Ué8-9 U74-13 U77-3

U62-3 U72-17 U78-12

U22-6 U21-5 U8-6 U9-6

Ul2-1 C15-1

J6-2 Ul1-33 U13-9 R31-1

Ul6-3 J5-24 Ul4-24

Ule-17 J5-33 Ul4-33

R80-1 J5-61 Ul4-61

R77-1 J5-59 U14-59

U20-15 J5-57 Ul4-57

R78-2 J5-54 Ul4-54

Ule-4 J5-25 Ul4-25

Ug2-17

Ul0-16 U1l1-25 U72-14

c7-1

U31-28

\

Ul-5
J5-16
U3-1
Ul-2
U26-2
U45-8
U24-4
U26-9
U1l-11
R22-2
J2-5
Jz2-4
U11-17
U73-17
U62-6
U73-12
U73-9
U1l1-11
Ul1l2-3
Ul2-4
ugo-7
R10-1
U3-19
U22-16
U22-15
Ul7-11
U4-3
U3-16
U31-
U64-9
U6-6
U56-11
U61-8
U61-11
U57-5
U56-2
U45-2
U58-1
U44-8
Us7-12
Us8-5
U58-9
U22-19
U22-7
U2-13
U2-14
u2-17
R79-2
U42-1
U76-17

B-8

U25-5
Ul4-16 U2-3

U23-1 U15-17
U4-6
U1l4-65
U24-5 U4-13
Ul9-6
U56-4 Ul5-9
R10-2 R9-2 C5-1 CR1-2
J2-20
U12-8 R20-2
Ul2-14
J6-3
U74-19 U85-19
U74-20 U85-20
U74-23 U85-23
U74-22 UB85-22
Ul2-12
C15-2
Cl7-1
S6-1
U23-19 U57-8
Ug-2 U9-2
U8-3 U9-3
U5-4
U4-9 U10-1 Ul0-11
U50-2 U50-14 Ue68-6 UL0-15 Ull-20 U72-13
29 U29-17 U27-17
U24-6
U59-6
U4-8
U79-12
U59-11
Uug-12
Uée7-14 Udd-6
U9-7 U28-20 U27-20
U8-15
U63-10
U58-10
U59-9 Ue64-11
U58-13 U64-10
U66-13 U8-1 U9S-1
J5-67 Uld4-67 Ul5-18
J5-20 Ul4-20
J5-21 Ul4-21
J5-22 Ul4-22
J5-53 U14-53
u42-7
Ug7-16

U76-13 U87-12

U76-8 U87-9

U4-4 U5-3

Ul2-6 Cl16-2

U59-10 U59-14

U76-4 U87-5

U8g-11 J3-9

U8g-3 J3-8

R73-2 R71-2 J3-7

Ulz2-5 C17-2

Ulg-8 U82-9 U25-13

U71-10 U71-11

U58-3 U58-4

R32-1 Jé-1 Ceé-1

U76-14 U87-15

U76-3 U87-2

U71-6 U82-5

U71-8 U82-13

R67-2 02-1 0Q1-2

U76-7 U87-6

R68-1 R70-1 U88-6

R28-2 U33-2

R30-2 U33-6

R16-2 U47-2

R18-2 U47-6

U71-1 U8l-6

R70-2 R72-2 R66-2 Q2-2

R71-1 Qi-1

R61-1 R62-1 R63-1 R64-1

U76-18 U87-19

J2-7 R4-1

R35-1 DS1-2

! GROUND NODES

R73-1 Ul1-3 Ul-9 U2-1 U
Ule-10 U22-1 U22-10 U2
U35-16 U36-16 U37-16
U45-7 U48-16 U49-16 U
U54-16 U55-16 U56-7 U
U68-10 U69-10 U70-7 U
U79-7 U81-7 U86-1 1U86
Ugg-2 U88-5 U88-7 U88-
U42-2 U42-8 U42-12 U42
U59-8 U82-8 U60-8 U73
U84-15 U64-7 U24-7 Ul
J5-9 J5-35 J5-60 U4-7
R4-2 U7-8 U8-8 U9S-4
Ul0-10 U10-13 TU1l0-17
Ul2-15 Cl6-1 U1l3-7 J4-6

R65—~

2-10
3-10
U38-16
50-16
61-7
71-7
-3 U8
10 U1

-14 U42-15

-8 U7

1 U78-

1

U3-10 Ueé-7 U
U26-7 U26-10

U39-16

U51-16

U40-
U52-1

U65-8 U66-8
U75-8 U76-1

6-4 U86-10

7-7 \

3-15 U8

9-7 U20-5 U2

Us-7
U9-8
U10-18

J4-17

\
U10-8
Ul1-22
J4-8

us7-7

16-1

U34-1
16 U4
6 US53
ue7-8
U76-10

ug7-1

Us8-7

3-8 U83-15
0-8 U21-8

\
J3-1
J4-9

J3-6
S4-2

\
6 \
1-16
-16

Ue7-12

\
U87-10

u44-7
Ug4-8
\

\
53-2

\

U43-7

\

\

\

B-9

§2-2 S81-2 S6-2 U25-8 C5-2 U32-1 U32-10 U32-19 U46-1 \
U46-10 U46-19 Q2-3 U62-7 U63-7 U74-12 U74-18 J6-4 C4-2 C13-2 \
U72-20 U85-12 U85-18 U77-14 U77-20 U77-22 U78-9 \
U78-10 U78-15 U78-20 U78-21 U78-22 U78-23 U78-24 U78-31
U31-7 U30-14 U29-14 U28-14 U27-14 Ul4-9 U14-35 Ul4-60 \
Ul5-6 U15-7 Ul5-10 Cl1l-2 C6-2 C7-2 \

U18-7 R35-2 R77-2 R80-2 C8-2 Cc9-2 z21-1

! POWER NODES

Ul8-1 DSl1l-1 RI1-1 R34-2 R33-2 R3-2 U33-3 U33-14 R5-2 R6-2
R7-2 R8-2 UB0-14 R32-2 R31-2 R68-2 R69-2 R67-1 \
R61-2 R62-2 R63-2 R64-2 R65-2 Ul-1 Ul-6 U1-17 \
Ul-18 U2-20 U3-20 Ue6-1 U6-12 Ub-14 Uls6-20 \

U22-3 U22-20 U23-20 U26-14 U34-8 U35-8 U36-8 U37-8 \
U38-8 U39-8 U40-8 U41-8 U43-1 U43-2 U43-14 \

U45-14 U47-3 U47-14 U48-8 U49-8 U50-8 U51-8 U52-8 \
U53-8 U54-8 ©U55-8 U56-14 U61-14 U65~1l6 U6o6-1l6 \

Ué67-10 Ueé7-16 U68-20 U69-20 U70-14 U71-14 U75-1 U75-16
U76-20 U79-1 U79-14 U81-14 U86-20 U87-20 U88-12 \
Ugg-14 Ul1l7-1 Ul7-2 Ul7-14 R66-1 R79-1 R78-1 \

R26-2 R9-1 J5-62 Ul4-62 U42-16 U57-14 \

U58-14 U44-4 U44-10 U44-14 U59-1 U59-5 U59-15 \

U59-16 U82-16 U60-6 U60-16 U73-16 U83-16 UB4-16 U64-14
U24-14 U19-14 U20-1 U20-3 U20-10 U20-11 U20-13 \

U20-16 U21-16 J5-30 U4-14 U5-14 U7-4 \

U7-16 U8-16 U9-1l6 Ul0-14 Ul0-20 U1ll-44 R2-2 Ul2-16 \
U13-14 J4-10 J4-11 C1-1 J4-12 J4-13 U25-2 \

U25-3 U25-4 U25-10 U25-11 U25-12 U25-14 U25-16 CR1l~1 \
U32-20 U46-20 Q1-3 U62-14 U63-14 U74-24 \

J6-5 U72-36 U72-40 U85-24 U77-1 U77-27 U77-28 U78-7 \
U78-30 U78-34 U78-35 U78-40 U31-26 U30-1 U30-28 \

U29-1 U29-28 U28-1 U28-28 U27-1 U27-28 Ul4-30 UL5-14 \
U15-15 Ul5-20

! UNUSED OUTPUTS

U26-3
U73-4
U75-3
U75-6
U75-11
U75-14
U86-2
U86-5
Ul5-4
U59-7
U42-5
U42-6
U42-13

B-10

\

\

\

\

U42-11
U42-10
U42-9
U43-3
U43-4
U43-5
U43-6
U43-10
U43-12
U43-13
Ue7-9
U31-13
U31-12
U31-11
U31-10
Ull-8
Ul1l-40
Ul1-3
Ul1-43
Ull1-42
Ull-41
Ul1-32
Ul1-31
Ul1-30
Ull-le
Ul1i-29
Ug-9
ug-7
U9-15
U9-14
U9-13
Us-12
Uo-11
U9-10
U21-12
U21-11
U21-10
U21-9
U21-7
U25-7
U25-6
U20-14
U17-3
Ul7-4
Ul7-5
Ul7-6
Ul7-10
U17-12
U17-13

*masters

! PROCESSOR ADDRESS LINES
Ul4-34
Ul4-33
U14-32
U14-28
Ul4-27
Ul4-26
U14-25
Ul4-24

Ul4-23
Ul4-22
Ul4-21
Ul4-20
Ul4-19
Ul4-18
Ul4-17
Ul4-16

Ul14-15
Ul4-14
Ul4-13
Ul4-12

! BUFFERED ADDRESS LINES
Ul6-19
Ule-16
Ulé6-15
Ule-12
U16-9
Ule-6
Ule-5
Ul6-2

U2-19
U2-16
U2-15
U2-12
U2-9
U2-6
U2-5
Uz2-2

U22-19
U22-16
U22-15
U22-12

U22-9
U22-6
U22-5

! PROCESSOR DATA LINES

U1l4-51
Ul4-49
Ul4-47
Ul4-45
Ul4-43
Ul4-41
Ul4-39
Ul4-37

Ul4-50
Ul4-48
Ul4-46
Ul4-44
Ul4-42
Ul4-40
Ul4~38
Ul4-36

! BUFFERED DATA LINES
U23-18
U23-17
U23-16
U23-15
U23-14
U23-13
U23-12
U23-11

U3-18
U3-17
U3-16
U3-15
U3-14
U3-13
U3-12
U3-11

(This page is intentionally blank.)

Appendix C

Subprograms for

Functional Test and Stimulus
Programs

The following programs are included in this appendix:
abort test
check_loop
check_meas
recover
Ist_conten

C-1

program abort test (ref)

FUNCTIONAL TEST of the Microprocessor Bus. !

1
1
! This program is called by many of the test programs after the test i
! program has found a failing circuit. This program highlights the part!
! with the FAILED test attribute, changes all parts with a TESTING test !
t atribute to UNTESTED, and then checks to see 1f gfi has enough test
! results to make an accusation. If an accusation exists then the

! accusation is displayed. Otherwise a gfi hint is generated for the
! part and the test programs are terminated so that GFI can begin

! troubleshooting.

1

1

1

1

1

1

1

none

1
1
1
1
1
!
TEST PROGRAMS CALLED: !
1
1
GRAPHICS PROGRAMS CALLED: !
fail (part_number) Highlight part to be failed
1
1

declare
string ref ! The ref-pin of the failed part
global numeric t2o ! Buffered I/0 on /term2.
global string array {1:107] part ! Part shape and positions
global numeric array [1:107] partatrb ! Attribute number of part

! Next three items relate to Test window displayed by disply pcb{).

global string testwindl = "\1B[12;65f\1B[Om\1B[Im" ! Place text in line 2

global string testwind2 = "\1B[13;65f\1B[Om\1B[Im" ! Place text in lilne 3

global string undrtest = "\1B[15;66f\1B{0m" ! Place text in line 5
end declare

! Highlight Pailed Part.

! Change all parts with a TESTING attribute to an UNTESTED attribute and

1

1
1

n = instr(ref, "-")
if n = 0 then n = len(ref) + 1
ic_ num = (val{mid(ref, 2, n-2),16))

! convert decimal ic num to hex

decl00 = ic num / $100

decl0 = (ic_num - declQ0 * $100) / $10

decl = (ic num - decl00 * $100 - declO * $10)
hex 1c num = decl00 * 100 + decl® * 10 + decl
fail (hex_ic num)

display GFI TROUBLESHOOTING in the test window.
for i =1 to 107

if partatrb[i] = 2 then untested (i)
next

print on t2o ,testwindl," GFI ", testwind2, "TROUBLESHOOTING"

print on t2o ,undrtest," "

If GFI has an accusation then display the accusation otherwise generate

GFI Hints,

accusation = gfi accuse
if accusation = "" then
gfi hint ref
fault 'gfi hints generated' ' please run gfi
else
fault '' '’ accusation
end if

end program

C-3

program check_loop

! This program checks the DEMO/TRAINER UUT Loopback switches.
! loopback switches are not closed then a prompt is generated to close
! the loopback switches. Otherwise no prompt is generated.

function pmpt_lpbk
declare
string q
end declare

print *Close SW4-4, SW4-5 and SW6-4 for loopback"
print "Press \1B[7m ENTER \1B[Om key to continue "

input q \ print
end function

execute rs232 init ()

write addr $2006, data $AA
wailt time $200

if ((read addr $2002) and $F) <> $D then
execute pmpt_1lpbk ()
return

end if

write addr $201E, data $FF
write addr $2016, data $BB
wait time $200

if (read addr $2016) <> $BB then
execute pmpt_1lpbk ()
return

end if

write addr $201C, data $FF

if ((read addr $201A) and 2} <> 0 then
execute pmpt_lpbk ()
return

end if

end program

program check meas (dev, start, stop, clock, enable)

! Check status of External START, STOP, CLOCK, ENABLE lines,

! Return 1 if measurement is complete, display prompt to fix
i the external lines, wait for ENTER key, and return O if the
! measurement times out.

trrrrr eIttt IRt I E I IIILIIIIIIIIIILIL

Ty ettt ettt I IR EILIIIILIIIITILILIIILIILIL

declare string dev
declare string start
declare string stop
declare string clock
declare string enable

times = 0

loop while checkstatus(dev) <> $F and times < 100
times = times + 1

end loop

If START fails then STOP, ENABLE and CLOCK will also fail.
If ENABLE fails then CLOCK will also fail.

Do not display CLOCK when ENABLE line fails.

if times < 100 then
return (1)
else
tl = open device "/terml", mode "unbuffered"

! turn autolinefeed off and clear screen

print "\1B[2J\1B[201"
n = checkstatus(dev) \ str = "* \ line = "»
if (n and 4) = 0 then
line = line + “START "
str = str + " START to " + start + ", "
else
if (n and 8) = 0 and stop <> "*" then
line = line + "STOP, "
str = str + " STOP to " + stop + ", "
end if
if (n and 2) = 0 and enable <> "“*" then
line = line + "ENABLE "
str = str + " ENABLE to ¥ + enable + ",*
else if (n and 1) = 0 then
line = line + "CLOCK *
str = str + " CLOCK to ™ + clock + ", %
end if
end if
print "\1B[1l;1f", "External line(s) ", line, "failed."
print "\1B[2;1f", "Connect", str, “\1B[3;lf"

print "Press \1B[7mENTER \1B{Om to REPEAT, \1B[7mNO \1B{Om to CONTINUE"

! Wait for ENTER key to be pressed.

Diagnose cause of failure and only display START if START fails.

input on tl ,str
print "\1B[20h\1B[2J"
close channel tl
if str = "\7F" then
return (1)
else
return (0)
end if
end if
end program

program recover

This program recovers sync between the 82288 Bus Controller and the i

80286 pod. !
1
Some of the stimulus programs disable ready before performing stimulus!
which can cause the 80286 bus controller to get out of sync with the !
pod. The recover() program is executed to resynchronize the bus
controller and the pod.

{none}

GRAPHICS PROGRAMS CALLED:
{none}

1

1

1

1

1

!

1

!

! TEST PROGRAMS CALLED:
1

1

1

1

1

! Global Variables Modified:

! recover times Reset to Zero
1

Trrrrrrrr R R R IRLIE L L LI LI LI LI IR EIGLIOGRIC LRI R LI IOLIRIEIGLIOR LI LI IO LI IOGLIGEITTILIOILIOILEIREISTITEITLEILITIIOLIIIIISLEIGLIILIILITY

! Main Declarations t
Trrrrrrrrrrrrrrrr R ETEIEELEEEIEEILILI LI LI LIOTIIITITITIIOPIITRPITIILILIITITEILILITILIIIIIITTITILIILILILILEIIETIIIIL

declare global numeric recover times ! Count of executing recover().

LS00 0 A A A A O O O O A A A A A O A O O A O O O O A A O A 0 0 0 A

! Main part of STIMULUS PROGRAM !
RSN N R R R N R R R R R R R R R R SRR N SR E R

recover_times = recover times + 1

if recover times <= 1 then
podsetup 'enable ~ready' "off"
setspace (get space {"memory", *word"}}
read addr 0
write addr 0, data 0
podsetup 'enable ~ready' "on"

else
podsetup ‘enable ~ready' "“off"
print "Please press the \1B[7mUUT RESET KEY \1B[Om"

POD is out of sync with
the 82288 bus controller
Read in memory space then
Write in memory space to
synchronize 82288 and PCD.

loop until (readstatus{) and $10) <> 0 ! wait for RESET active.
end loop
podsetup 'enable ~ready' "on"

loop until (readstatus() and $10) 0 ! wait for RESET inactive.
end loop
print "\1B{2J"

end if

end program

C-7

program tst_conten (addr, data bits)

rrrrrrrrrrrLE R LOELILIEILILIOLILIOILILILI RIS RITTITLITITLITIOILRITIRITRIT I LTI TITIT I LIRIRISRITTITILITI LIRS REITITITIILIIEIEIPITSEIILILILIILILIILSY

TEST to isolate DATA BUS CONTENTION to the failing part. !

This program attempts to determine the cause of Data Bus contention by!
testing the enable lines of all the devices on the Data Bus. This !
program performs several steps. First each device on the data bus is

! accessed and determined to be accessible or inaccessible. The

{ variable bad dev is a mask that records which devices failed.

! Many times when Data Bus contention exists, the device that has the

! bad enable lines can be accessed and the rest of the devices cannot be
accessed. This program checks the mask to see if all except one
device is bad and then tests the enable lines on the device that
appeared good.

1
1
1
1
1
I
1
1
1
1
If all devices are bad or more than one device is good then this test !
checks the enable lines of all the devices on the Data Bus by brute !
force. !
!
1
1
1
1
1
1
1
1
1
1

abort_test (ref-pin) If gfi has an accusation
display the accusation else
create a gfi hint for the
ref-pin and terminate the test
program (GFI begins trouble-
shooting).

1

1

1

1

1

1

H

1

1

1

1

1

1

1

1

1

1

1

! TEST PROGRAMS CALLED:
1

1

1

1

b

1

1

! FUNCTIONS CALLED:

! testic (refname, pinl, pin2) This function performs a gfi

! test on refname. Then the pins!
! pinl and pin2 (which are the 1
! enable lines) are checked to

t see if they are bad. If so

! abort_test is called and GFI is!
! started on the failing enable !
! line. Otherwise all test info !
! about the part is discarded !
! using the gfi clear command. f

declare
numeric addr t Address where failure occured.
numeric data bits ! Mask of failing data bits.
numeric bad dev = 0 t Mask to record falling devices
numeric array [0:$15] ram ic ! Convert RAM bit to part number
global string contention_checked t Record that this test ran.

end declare

function testic (ref, pin a, pin b)
declare numeric ref
declare numeric pin a
declare numeric pin b

! convert decimal ref to hex

decl00 = ref / 100
declO = (ref - declO0 * 100) / 10
decl = (ref - declO0 * 100 - declO * 10)
href = decl00 * $100 + decl0 * $10 + decl

ref a = "U" + str(href,16) + "-" + str(pin_a,16)
ref b = "U" + str(href,16) + “-" + str(pin b, 16)

if gfi test ref a fails then
if (gfi status ref a) = "bad" then
abort_test (ref a)
else

if (gfi status ref b) = "untested" then gfi test ref b

if (gfi status ref b) = "bad" then
abort_test (ref_b)
end if
end if
gfi clear ! Only looking at Enable
end if
end function

ram ic[0] = 55 \ ram ic[1l] = 54 !
ram ic[2] = 53 \ ram ic[3] = 52 1
ram ic[4] = 51 \ ram ic[5] = 50 !
ram_ic[6] = 49 \ ram ic[7] = 48 f
ram ic[8] = 41 \ ram ic[9] = 40 !
ram ic{10] = 39 \ ram ic{11] = 38 t
ram ic(12] = 37 \ ram ic{13] = 36 i

T

ram ic[14] = 35 \ ram ic[15] = 34

if contention checked <> "yes" then
contention checked = "yes"
podsetup ‘report intr' “off"
podsetup ‘'‘enable ~ready' "on"
print "\nl\nlTESTING BUS CONTENTION"

Read from each device on the bus and record if each device reads correctly.

Lines, Clear Other Info.

! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs
! RAMs

UsS,
Us3,
Us1,
U49,
U4,
U39,
u37,
u3s,

Then check and see if all components are bad except one.

that component's enable lines.

Otherwise brute force check all enable lines on all components connected to

the bus.
! ROMO and RCM1

setspace(getspace ("memory", "“word"))
if (read addr $E002A) <> 0 then bad dev

Us4

Uso
u4s
U40
U3s
U3e
U34

If so then check

bad_dev or 1

if (read addr $F0022) <> 0 then bad dev = bad_dev or 2

! Dynamic RAM

write addr $1000, data $FFFF

if (read addr $1000) <> SFFFF then bad dev = bad dev or 4

write addr $1000, data O

if (read addr $1000) <> O then bad dev = bad_dev or 4

{ PIA registers

C-9

execute pia init ()

if (read addr $4002) <> $FF then bad dev = bad dev or 8

write addr $4002, data O

if (read addr $4002) <> 0 then bad dev = bad dev or 8

! DUART registers

execute rs232 init ()

if (read addr $200A) <> $11 then bad dev = bad dev or $10

if {read addr $201A) <> $FF then bad_dev

bad_dev or $10

if (read addr $2012) <> $C then bad dev = bad dev or $10

! Video Controller registers

execute rs232 init ()

if (read addr 8) <> $FF then bad dev = bad dev or $20
if (read addr $A) <> 0 then bad dev = bad_dev or $20

I If only one device is good, CLIP and check enable lines on that device.

if bad dev <> 0 and bad_dev <> $3F then
{ CLIP and Check Enable lines on ROMs
if bad dev = $7E then
if (data bits and $FF) <> O then
testic(29, $20, $22)
end if
if (data bits and $FFC0) <> 0 then
testic(30, $20, $22)
end if

else if bad_dev = $7D then
if (data bits and $FF) <> 0 then
testic (27, $20, $22)
end if
if (data bits and $FF00) <> 0 then
testic(28, $20, $22)
end if

else if bad_dev = $7B then
testic (ram ic[msb(data bits)], $15, 4)
else if bad_dev = $77 then
testic (31, 6, 6)
else if bad_dev = $2F then
testic (11, $39, 9)
else if bad _dev = $1F then
testic (72, 2, 3)
end if
end if

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Check RAM.
Check PIA.
Check DUART.

Check Video Controller

! BRUTE FORCE check enable lines of all devices on bus.

if (data_bits and $FF) <> 0 then
testic (27, $20, $22)
testic(29, $20, $22)

end if

if (data bits and $FF00) <> O then
testic(28, $20, $22)
testic (30, $20, $22)

end if

testic (ram ic[msb(data bits}], $15, 4}

testic (31, 6, 6)

testic (11, $39, 9)

testic (72, 2, 3)

Low data bits are bad
Check low byte ROMO.

High data bits are bad
Check high byte ROMO.

Check RAM.
Check PIA.

! Check DUART.
t Check Video Controller

testic (10, $11, 1) ! Check Interrupt Buffer
if bad dev = $3F then
if (data_bits and $FF) <> 0 then
if gfi test "U3-1" fails then abort test ("U3-1")
end if '
if (data_bits and $FF00) <> 0 then
if gfi test "U23-1" fails then abort_test (*U23-1")
end if
end if

print "BUS CONTENTION TEST PASSES"
end if
end program

C-12

(This page is intentionally blank.)

Index

*masters, 4-5, 7-13

ABORT_TEST program, 4-262

Acoustic and visual characteristics, 4-380

Active edge, 8-1

Active interrupt lines, 4-8 See also interrupts

ADDR_OUT stimulus program, 3-12, 4-20
used in other chapters, 4-263, 4-283

ADDR_OUT response file, 4-22

Address buffers, 4-246

Address Decode functional block, 4-273
example, 4-276
keystroke functional test, 4-277
programmed functional test, 4-282
stimulus programs and response files, 4-283
summary page, 4-289
testing and troubleshooting, 4-273

Address decoder, 4-273

Address latch, 4-273

Address space, 4-14, 8-1

Aliasing, 8-1

armcommand, 3-21

Assert, 8-1

assoc command, 3-19

Asynchronous, 8-1

Asynchronous level history, 2-7, 4-245, 7-8

Asynchronous signals, 7-7

Index-1

Automated test, 8-2
Automated troubleshooting, 8-2

Backiracing, 2-12, 6-1, 8-2
path, 7-14
Baud-rate timing, 4-153
Bidirectional lines, 3-10, 7-13
Blinking cursors, 4-180
Breakpoints, 4-8, 5-7
Built-in fault condition exerciser, 7-23
Built-in tests, 3-24, 4-3
Microprocessor Bus, 4-7, 4-10
RAM, 4-7, 4-59
ROM, 4-7, 4-33
Bus, 8-2
arbitration, 4-248
contention, 4-14, 4-33, 8-2
controller, 4-351
cycles, 2-1, 4-7, 4-331
emulation, 4-3
exchange, 4-9, 4-248
masters, 4-5, 7-13
Bus Buffer functional block, 4-243
example, 4-250
keystroke functional test, 4-251
programmed functional test, 4-262
stimulus programs and response files, 4-263
summary page, 4-272
testing and troubleshooting, 4-243

CAD, 8-2

Calibration, 7-8

CAS, See Column Address Strobe

CAS_STIM stimulus program, 4-88, 4-92

CAS_STIM response file, 4-94

Character generator, 4-233

Clearance, 4-3

clip command, 3-19

Clip module, 2-10, 3-19

Clip module name, 3-19

Clock and Reset functional block, 4-291
example, 4-293
keystroke functional test, 4-294
programmed functional test, 4-300
stimulus programs and response files, 4-301

Index-2

Clock and Reset functional block, (continued)
summary page, 4-312
testing and troubleshooting, 4-291
Clock signal, 7-5, 7-7
Clocked level history, 2-7, 2-9, 2-10, 4-246
Color look-up table, 4-177
Column Address Strobe (CAS), 4-75
Comment, 8-2
Component, 8-2
Component extraction tool, 4-3
Connectors, 4-250
Control lines, 4-247, 8-2
Coprocessor cycles, 4-9
Coupling fault, 4-61
CRC signature, 2-10, 3-19, 4-245, 7-5, 8-2
Crystal oscillator, 4-154, 4-291
CTRL_OUT1 stimulus program, 3-16, 4-28
used in other chapters, 4-263
CTRL_OUT1 response file, 4-30
CTRL_OUT?2 stimulus program, 3-16, 4-266
CTRL_OUT2 response file, 4-268
CTRL_OUTS stimulus program, 3-16, 4-269
used in other chapters, 4-329
CTRL_OUTS response file, 4-271
Cursor, 8-2
Cursor timing output, 4-203
Cycles
bus, 2-1, 4-7, 4-331
coprocessor, 4-8
refresh, 4-9, 4-75, 4-79, 4-81
Cyclic Redundancy Check (CRC), 2-6
See also CRC signature

Data bus, 8-3

Data Compare Equal (DCE) condition, 2-10

Data exchange protocol, 4-116

Data tied to address, 4-38

DATA_OUT stimulus program, 3-16, 4-17, 4-24
used in other chapters, 4-263

DATA_OUT response file, 4-26

DECODE stimulus program, 4-283, 4-286
used in other chapters, 4-46, 4-322

DECODE response file, 4-288

Delay line, 7-9

Delay parameter, 4-61

Index-3

Index-4

Demo/Trainer UUT, 3-2, 4-1, 4-10, 4-63, 6-3
Device, 8-3
Device name, 3-20
Diagnostic messages
bus test, 4-6
RAM test, 4-62
ROM test, 4-36
Diagnostic program, 3-8, 6-1
Diagnostic strategy, 6-3
DIP, 8-3
Direction control signals, 4-248
Directory, 8-3
Discrete /O, 4-117
DMA controllers, 4-9
Downloading programs to the UUT, 5-8
Drivability, 3-4, 8-3
Drive capability, 2-9
DTACK, 4-248, 4-331
Dual UART (DUART), 4-155
Dynamic coupling, 8-3
Dynamic RAM, 4-59, 4-75
adjusting sync timing for, 7-11
multiplexed address, 4-75
refresh, 4-9, 4-75, 4-79, 4-81
Dynamic RAM Timing functional block, 4-75
example, 4-79
keystroke functional test, 4-83
programmed functional test, 4-88
stimulus programs and response files, 4-89
summary page, 4-113
testing and troubleshooting, 4-75

Edge, 8-3
Edge-sensitive inputs, 4-116
Edit key, 7-18
Editor, 7-17
Electromechanical devices, 4-117
Emulative testing, 2-2
speed of emulation, 5-8
enabled line_timeout fault condition, 4-351
Examples
Address Decode, 4-276
Bus Buffer, 4-250
Clock and Reset, 4-293
Interrupt Circuit, 4-316

Examples, (continued)
Microprocessor Bus, 4-10
Parallel /0, 4-118
Dynamic RAM Timing, 4-79
RAM, 4-63
Ready Circuit, 4-334
ROM, 4-39
Serial I/O, 4-155
Video Control, 4-206
Video Output, 4-180
Video RAM, 4-233

EXEC key, 4-381

Exerciser, See fault condition exerciser

External clock signal (sync), 2-10, 7-9

External control lines, 2-10

External I/O lines, 4-151

External synchronization, 8-3

Fault, 8-3
fault command, 6-8, 6-9
Fault condition, 6-8, 7-23, 8-3
enabled_line_timeout, 4-351
exerciser, 7-23, 8-4
forcing-line, 4-350
handler, 3-8, 5-8, 6-1, 6-8, 8-4
raising, 8-4
ram_component, 4-66
rom_address, 4-44
rom_comp, 4-44
Fault coverage, 3-11, 5-3, 4-244
Fault isolation, 2-11
Feedback loop, 8-4
breaking, 4-380
interrupt Circuit, 4-313
Ready Circuit, 4-331, 4-335
Forcing lines, 4-379, 8-4
Forcing signal conditions, 4-9
Forcing-line fault condition, 4-350
FRC_INT program, 4-160
Freerun clock, 2-9
Frequency, 2-7, 2-9, 4-246, 7-7
Frequency min-max, 4-79, 4-292
FREQUENCY stimulus program, 4-301, 4-310
used in other chapters, 4-89, 4-176
FREQUENCY response file, 4-311

Index-5

Index-6

Functional block, 3-1, 3-11, 3-16, 4-1

Functional test, 1-5, 2-13, 3-8, 5-8, 8-4
TEST_BUS, 4-14
TEST _BUS2, 6-18, 6-17
TEST _PIA, 4-124
TEST _PIA2, 6-20, 6-17
TEST_RAM , 4-66
TEST_RAM2, 6-24, 6-17
TEST_ROM, 4-44
TEST_ROM2, 6-27, 6-17
TEST_RS232, 4-160
TEST_RS232B, 6-29, 6-17
TEST _VIDEO, 4-186
TEST _VIDEO2, 6-31, 6-17
TST_BUFFER, 4-262
TST_CLOCK, 4-300
TST_CONTEN, 4-15
TST_DECODE, 4-282
TST_INTRPT, 4-322

used in other chapters, 4-160

TST_READY, 4-348
TST_REFRSH, 4-88
TST_VIDCTL, 4-216
TST_VIDRAM, 4-238

getoffset command, 4-77, 7-9

GFl, See Guided Fault Isolation

GFl hints, 2-13

GFl key, 7-2

GFl procedures, 1-5

GFl summary, 8-4

GFI troubleshooting, 2-12, 7-2

gfi control command, 3-19

gfi device command, 3-19

gfi hint command, 3-8, 6-1, 6-9

gfi test command, 3-8, 3-24

Glitches, 7-8

Go/no-go test, 4-2, 5-1, 5-3, 6-1, 6-3, 8-4
GO_NOGO2 diagnostic program, 6-11
Ground, 4-4

Guided Fault Isolation (GFI), 1-5, 2-12, 3-12, 8-4

Handler, See fault condition handler
Hexadecimal, 8-5

HOLD line, 4-10
HOLDA line, 4-10

In-circuit component tests, 4-381
In-circuit emulation, 2-2
Initialization, 3-10, 3-17, 4-116
Parallel /O, 4-126
RAM, 4-67
Serial I/0, 4-162
Video RAM, 4-238
Interface pod, See pod
Internal address bus, 4-246
Internal operating modes, 4-116
Internal sync, 2-10
Interrupt acknowledge cycle, 3-16, 4-315
Interrupt Circuit functional block, 4-313
example, 4-316
keystroke functional test, 4-316
programmed functional test, 4-322
stimulus programs and response files, 4-322
summary page, 4-329
testing and troubleshooting, 4-313
INTERRUPT stimulus program, 4-322, 4-326
INTERRUPT response file, 4-328
Interrupt response file, 4-328
Interrupts, 4-8
interrupt vector, 4-313
I/0, 8-5
I/0O module, 2-4, 2-10, 3-17, 7-1, 7-11, 8-5
adjusting sync, 7-9
breakpoints, 5-7
calibration, 7-8
I/0O module adapter, 2-10
I/0 module name, 3-20

Kernel, 4-5

KEY_1 stimulus program, 4-126, 4-130
KEY_1 response file, 4-132

KEY_2 stimulus program, 4-126, 4-133
KEY_2 response file, 4-135

KEY_3 stimulus program, 4-126, 4-136
KEY_3 response file, 4-138

KEY_4 stimulus program, 4-126, 4-139
KEY_4 response file, 4-141

Keys, 4-117

Index-7

Index-8

Keystroke functional test
Address Decode, 4-277
Bus Buffer, 4-251
Clock and Reset, 4-294
Interrupt Circuit, 4-316
Microprocessor Bus, 4-10
Parallel I/0, 4-118
Dynamic RAM Timing, 4-83
RAM, 4-63
Ready Circuit, 4-335
ROM, 4-39
Serial I/0, 4-156
Video Control, 4-208
Video Output, 4-181
Video RAM, 4-233
Keystroke mode, 1-5
Known-good UUT, 3-10, 3-12, 7-4

LEARN function, 7-4, 7-7

Level 1 programming, 1-3

Level 2 programming, 1-3

Level 3 programming, 1-5

Level 4 programming, 1-5

Level history, 2-7, 2-9, 7-8, 8-5

LEVELS stimulus program, 4-217, 4-226
used in other chapters, 4-238

LEVELS response file, 4-227

Library, 8-5

Line numbers, 3-20

Local address bus, 4-246

LOOP key, 7-23

Loopback, 4-151

Machine code, 5-8

Mapped address bus, 4-246

Marginal signals, 4-292

Marginal signature, 7-5

Mask, 8-5

Masters, 4-5, 7-13

Measurement device, 3-17
calibration, 7-8

Memory arbitration circuit, 4-205

Microprocessor Bus functional block, 4-3
example, 4-10
keystroke functional test, 4-10

Microprocessor Bus functional block, (continued)
programmed functional test, 4-14
stimulus programs and response files, 4-17
summary page, 4-31
testing and troubleshooting, 4-5

Microprocessor kernel, 4-5

Milliohmmeter, 7-25

Min-max, 4-79, 4-292

Monitor, 8-5

Msgs key, 7-18

Multiple failures, 6-10

Multiplexed address, 4-75

Net list, 7-11

Node, 8-5

Node activity, 5-3

Node characterization, 2-6
Node list, 2-12, 7-11, 8-5
Noise, 4-292

Normal mode, 2-9

Open circuit, 7-24

Operator, 8-5

Operator's display, 8-6

Operator's interface, 8-6

Operator's keypad, 8-6

Output loaded, 7-24

Overdrive, 2-9, 2-10, 4-4, 4-206, 4-331, 4-381, 8-6
Overlapped ramping operations, 4-244

Parallel I/0 functional block, 4-115
example, 4-118
keystroke functional test, 4-118
programmed functional test, 4-124
stimulus programs and response files, 4-126
summary page, 4-149
testing and troubleshooting, 4-115

Part description, 7-12, 8-6

Part library, 2-12, 7-11, 7-12, 8-6

Partitioning the UUT, 3-1

Pattern sensitive fault, 4-61

Patterns, 2-1, 3-19

Peripheral devices, 4-313

PIA_DATA stimulus program, 4-142

PIA_DATA response file, 4-144

Index-9

PIA_INIT initialization program, 4-126, 4-148
PIA_LEDS stimulus program, 4-126, 4-145
PIA_LEDS response file, 4-146
Pin coverage matrix, 7-21
Pin numbers, 3-20
Pin number parameters, 3-21
Pod Address Sync, 2-9, 3-16, 4-77
Pod Data Sync, 2-9, 3-16, 4-77
Pod, 2-4, 2-9, 4-3, 5-8
library, 8-6
pod breakpoints, 4-8, 5-7
synchronization, 8-6
podsetup command, 4-5
Power supply, 4-3
Priority pin, 8-6
Probe, 2-9, 3-17, 4-292, 7-1, 7-11, 8-6
adjusting sync, 7-9
calibration, 7-8
injecting fauits with, 5-3
Program library, 8-6
Programmable Interface Adapter (PIA), 4-115
Programmable Interval Timer (PIT), 4-115
Programmed functional test
Address Decode, 4-282
Bus Buffer, 4-262
Clock and Reset, 4-300
Interrupt Circuit, 4-322
Microprocessor Bus, 4-14
Parallel /0, 4-124
Dynamic RAM Timing, 4-88
RAM, 4-66
Ready Circuit, 4-348
ROM, 4-44
Serial /O, 4-160
Video Control, 4-216
Video Output, 4-186
Video RAM, 4-238
Programmer's interface, 1-5, 8-7
Programmer's keyboard, 8-7
Pull-up resistors, 4-4

Quality characterization, 2-6

Raise, See fault condition, raising
RAM FAST test, 4-59

Index-10

RAM FULL test, 4-59
RAM QUICK test, 4-59
RAM TEST key, 4-63
RAM
dynamic, 4-75
sync timing, 7-11
testing, 4-59
ram_component fault condition, 4-66
RAM_DATA stimulus program, 4-67, 4-70
used in other chapters, 4-126
RAM_DATA response file, 4-72
RAM_FILL initialization program, 4-67, 4-73
RAM functional block, 4-59
example, 4-63
keystroke functional test, 4-63
programmed functional test, 4-66
stimulus programs and response files, 4-67
summary page, 4-74
testing and troubleshooting, 4-59
Ramp function, 4-244
rampaddr command, 4-246
rampdata command, 4-247
RAMSELECT1 stimulus program, 4-89, 4-98
RAMSELECT1 response file, 4-100
RAMSELECT2 stimulus program, 4-89, 4-101
RAMSELECT2 response file, 4-103
RAM Timing, See Dynamic RAM Timing
RAS, See Row Address Strobe
RAS_STIM stimulus program, 4-88, 4-95
RAS_STIM response file, 4-97
RD_CSCD program, 4-160
Read/Write strobe, 4-33
readout command, 3-21
Ready button, 3-17
Ready Circuit functional block, 4-331
example, 4-334
keystroke functional test, 4-335
programmed functional test, 4-348
stimulus programs and response files, 4-349
summary page, 4-378
testing and troubleshooting, 4-331
Ready signal, 4-248
READY_1 stimulus program, 4-349, 4-354
READY_1 response file, 4-357
READY_2 stimulus program, 4-349, 4-358

Index-11

READY_2 response file, 4-361
READY_3 stimulus program, 4-349, 4-362
READY_3 response file, 4-365
READY_4 stimulus program, 4-349, 4-366
READY_4 response file, 4-369
READY_5 stimulus program, 4-349, 4-370
READY_5 response file, 4-373
READY_6 stimulus program, 4-349, 4-374
READY_6 response file, 4-377
Reterence designator, 3-20, 7-11, 8-7
Reference designator list, 7-11
Refresh, 4-9, 4-75, 4-79, 4-81, 4-75, 4-79, 4-81
Refresh cycle, 4-9, 4-75, 4-79, 4-81
REFSH_ADDR stimulus program, 4-89, 4-104
REFSH_ADDR response file, 4-106
REFSH_TIME stimulus program, 4-89, 4-107
REFSH_TIME response file, 4-109
REFSH_U56 stimulus program, 4-89, 4-110
REFSH_U56 response file, 4-112
Related input pin, 8-7
Repair, 7-24
Reset functional block, See Clock and Reset
RESET_HIGH stimulus program, 4-301, 4-304
RESET_HIGH response file, 4-306
RESET_LOW stimulus program, 4-301, 4-307
used in other chapters, 4-217, 4-283
RESET_LOW response file, 4-309
Response file, 3-12, 4-17, 7-4, 8-7
rom_address fault condition, 4-44
rom_comp fault condition, 4-44
ROM TEST key, 4-39
ROMO_DATA stimulus program, 4-46, 4-50
ROMO_DATA response file, 4-52
ROM1_DATA stimulus program, 3-16, 4-46, 4-53
used in other chapters, 4-263
ROM1_DATA response file, 4-55
ROM functional block, 4-33
example, 4-39
keystroke functional test, 4-39
programmed functional test, 4-44
stimulus programs and response files, 4-46
summary page, 4-57
testing and troubleshooting, 4-33
Row Address Strobe (RAS), 4-75, 4-78
RS-232 port, 4-154

Index-12

RS232_DATA stimulus program, 4-163, 4-166
RS232_DATA response file, 4-168

RS232_INIT initialization program, 4-163, 4-175
RS232_LVL stimulus program, 4-163, 4-169
RS232_LVL response file, 4-171

Rules for stimulus programs and response files, 4-17
runuut command, 5-7

RUN UUT mode, 2-9

RUN UUT test, 8-7

Serial interface adaptor, 4-151
Serial IO functional block, 4-151
example, 4-155
keystroke functional test, 4-156
programmed functional test, 4-160
stimulus programs and response files, 4-163
summary page, 4-176
testing and troubleshooting, 4-151
setoffset command, 4-77, 7-9
SETUP POD command, 4-5
SIA , See serial interface adaptor
Side (of YO module), 2-10, 3-17
Signature, See CRC signature
SIP, 8-7
Softkey, 8-7
Start signal, 4-180
State machine, 4-205, 4-331, 8-7
Static electricity, 4-117
Static logic levels, 4-4
Static RAM, 4-59, 4-61, 4-75
Status lines, 4-9
Stimulus and measurement capabilities, 2-7
Stimulus function, 7-23
Stimulus program, 3-6, 3-16, 4-17, 7-2, 8-8
Stimulus programs and response files
Address Decode, 4-283
Bus Buffer, 4-263
Clock and Reset, 4-301
Interrupt Circuit, 4-322
Microprocessor Bus, 4-17
Parallel I/0, 4-126
Dynamic RAM Timing, 4-89
RAM, 4-67
Ready Circuit, 4-349
ROM, 4-46

Index-13

Stimulus programs and response files, (continued)
Serial /0, 4-163
Video Control, 4-216
Video Output, 4-187
Video RAM, 4-238
Stop signal, 4-180
storepatt command, 3-19, 4-383
String, 8-8
Stuck bus lines, 4-5
Stuck cells, 4-59
SUMMARY softkey, 7-17
Summary of GFl coverage, 7-17
Summary page
Address Decode, 4-289
Bus Buffer, 4-272
Clock and Reset, 4-312
Interrupt Circuit, 4-329
Microprocessor Bus, 4-31
Parallel I/O, 4-149
Dynamic RAM Timing, 4-113
RAM, 4-74
Ready Circuit, 4-378
ROM, 4-57
Serial /0, 4-176
Video Control, 4-229
Video Output, 4-202
Video RAM, 4-242
Switches, 4-117
SYNC key, 4-8
sync command, 4-8
Sync timing, 7-9
Synchronization mode, 2-9, 4-8, 7-8
with ROM, 4-39
Synchronous, 8-8
Synchronous level history, 2-7, 2-9, 2-10, 4-246
System address bus, 4-246
System clock, 4-249

Termination status, 8-8

Test access, 4-3

Test access socket, 4-10

Test access switch, 4-10

Test function, 7-23

TEST_BUS functional test, 4-14
TEST_BUS2 functional test, 6-17, 6-18

Index-14

TEST_PIA functional test, 4-124
TEST_PIA2 functional test, 6-17, 6-20
TEST_RAM functional test, 4-66
TEST_RAM2 functional test, 6-17, 6-24
TEST_ROM functional test, 4-44
TEST_ROM2 functional test, 6-17, 6-27
TEST_RS$232 functional test, 4-160
TEST_RS232B functional test, 6-17, 6-29
TEST_VIDEO functional test, 4-186
TEST_VIDEO2 functional test, 6-17, 6-32
Testing and troubleshooting, 2-1, 3-1

Address Decode, 4-273

Bus Buffer, 4-243

Clock and Reset, 4-291

Interrupt Circuit, 4-313

Microprocessor Bus, 4-5

Parallel VO, 4-115

Dynamic RAM Timing, 4-75

RAM, 4-59

Ready Circuit, 4-331

ROM, 4-33

Serial /O, 4-151

Video Control, 4-205

Video Output, 4-177

Video RAM, 4-231
Timeout, 8-8
TL/1 programming language, 1-2, 1-6
Toggle, 8-8
togglecontrol command, 4-248
Transition count, 2-7, 2-9, 2-107, 4-246, 7-4, 8-8
Transition fault, 4-61
Troubleshooting, 2-1, 3-1, 6-1, 7-1, 8-8
TST_BUFFER functional test, 4-262
TST_CLOCK functional test, 4-300
TST_CONTEN functional test, 4-15
TST_DECODE functional test, 4-282
TST_INTRPT functional test, 4-322

used in other chapters, 4-160
TST_READY functional test, 4-348
TST_REFRSH functional test, 4-88
TST_VIDCTL functional test, 4-216
TST_VIDRAM functional test, 4-238
TTL_LVL stimulus program, 4-163, 4-172

used in other chapters, 4-322
TTL_LVL response file, 4-174

Index-15

UART, See Universal Asynchronous Receiver-Transmitter
Unguided Fault Isolation (UFI), 7-1

Unit Under Test (UUT), 1-1, 3-1, 4-3, 8-8

Universal Asynchronous Receiver-Transmitter, 4-151
Unprogrammed ROM, 4-38

Unstable signature, 7-5

Unused inputs, 4-4

Use of pod, 2-9

Userdisk, 8-8

UUT, See Unit Under Test

UUT clock, 4-4

UUT directory, See summary page

UUT go/no-go test, 3-8, 4-2, 5-1, 5-3, 6-1, 63 6-9
UUT partitioning, 3-1

UUT voltage, 4-5

Variable signature, 7-5
Vertical scan rate, 4-203
Vertical sync, 4-180
Video cards, 4-180
Video control, 4-203
Video Control functional block, 4-203
example, 4-206
keystroke functional test, 4-208
programmed functional test, 4-216
stimulus programs and response files, 4-216
summary page, 4-229
testing and troubleshooting, 4-205
Video display controller, 4-177
VIDEQ_DATA stimulus program, 4-216, 4-220
VIDEO_DATA response file, 4-222
VIDEO_FIL1 initialization program, 4-187, 4-200
used in other chapters, 4-216, 4-238
VIDEO_FIL2 initialization program, 4-187, 4-201
VIDEQ_FREQ stimulus program, 4-187, 4-190
used in other chapters, 4-216
VIDEO_FREQ response file, 4-190
VIDEO_INIT initialization program, 4-187, 4-199
used in other chapters, 4-217, 4-239
Video Output functional block, 4-177
example, 4-180
keystroke functional test, 4-181
programmed functional test, 4-186
stimulus programs and response files, 4-187

Index-16

Video Output functional block, (continued)
summary page, 4-202
testing and troubleshooting, 4-177
VIDEO_OUT stimulus program, 4-187, 4-192
VIDEO_OUT response file, 4-193
Video RAM functional block, 4-231
example, 4-233
keystroke functional test, 4-233
programmed functional test, 4-238
stimulus programs and response files, 4-238
summary page, 4-242
testing and troubleshooting, 4-231
VIDEO_RDY stimulus program, 4-217, 4-223
used in other chapters, 4-238
VIDEQO_RDY response file, 4-224
VIDEQ_SCAN stimulus program, 4-187, 4-195
used in other chapters, 4-216, 4-238
VIDEO_SCAN response file, 4-196
Visual or acoustic characteristics, 4-380

Wait state, 4-331, 8-9

Watchdog timer, 4-8, 4-379, 8-9
Wildcard, 8-9

Window, 8-9

Wire list, 7-11

WRITE BLOCK command, 5-8
WRITE command, 5-8

Wirite control signals, 4-248 ,
writepatt command, 3-20, 3-21, 4-381

Index-17

	9100_App_1.pdf
	9100_App_2.pdf
	9100_App_3.pdf
	9100_App_4.pdf

