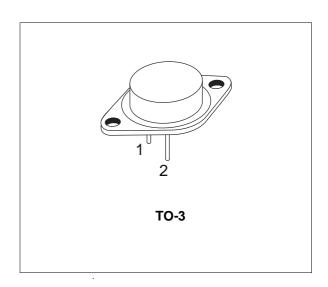
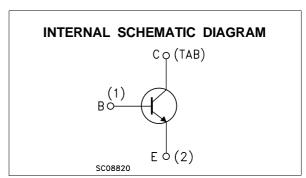


HIGH CURRENT SILICON NPN POWER TRANSISTOR


- STMicroelectronics PREFERRED SALESTYPE
- HIGH CURRENT CAPABILITY


APPLICATIONS

- GENERAL PURPOSE SWITCHING AND AMPLIFIER
- LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

DESCRIPTION

The 2N5886 is a silicon Epitaxial-Base NPN power transistor mounted in Jedec TO-3 metal case. It is inteded for use in power linear amplifiers and switching applications.

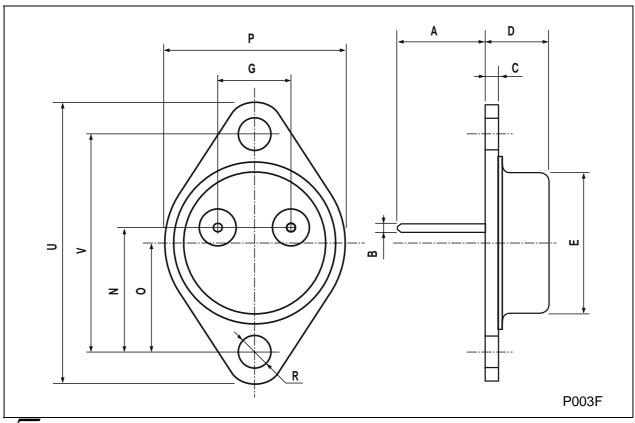
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	80	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	80	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	5	V
Ic	Collector Current	25	А
I _{CM}	Collector Peak Current	50	Α
I _B	Base Current	7.5	А
P _{tot}	Total Dissipation at T _c ≤ 25 °C	200	W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	200	°C

January 2000 1/4

THERMAL DATA

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector Cut-off Current (V _{BE} = -1.5V)	V _{CE} = 80 V V _{CE} = 80 V T _c = 150 °C			1 10	mA mA
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 80 V			1	mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 40 V			2	mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 200 mA	80			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage	I _C = 15 A I _B = 1.5 A I _C = 25 A I _B = 6.25 A			1 4	V V
$V_{BE(sat)^*}$	Base-Emitter Saturation Voltage	I _C = 25 A I _B = 6.25 A			2.5	V
$V_{BE}*$	Base-Emitter Voltage	I _C = 10 A V _{CE} = 4 V			1.5	V
h _{FE} *	DC Current Gain	Ic = 3 A	35 20 4		100	
h _{fe}	Small Signal Current Gain	Ic = 3 A V _{CE} = 4 V f = 1KHz	20			
f⊤	Transition frequency	I _C = 1 A V _{CE} = 10 V f = 1 MHz	4			MHz
Ссво	Collector Base Capacitance	I _E = 0 V _{CB} = 10 V f = 1MHz			500	pF
t _r ts t _f	RESISTIVE LOAD Rise Time Storage Time Fall Time	$I_C = 10 \text{ A}$ $V_{CC} = 30 \text{ V}$ $I_{B1} = -I_{B2} = 1 \text{ A}$			0.7 1 0.8	μs μs μs

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

2/4

TO-3 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	11.00		13.10	0.433		0.516	
В	0.97		1.15	0.038		0.045	
С	1.50		1.65	0.059		0.065	
D	8.32		8.92	0.327		0.351	
Е	19.00		20.00	0.748		0.787	
G	10.70		11.10	0.421		0.437	
N	16.50		17.20	0.649		0.677	
Р	25.00		26.00	0.984		1.023	
R	4.00		4.09	0.157		0.161	
U	38.50		39.30	1.515		1.547	
V	30.00		30.30	1.187		1.193	

3/4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com