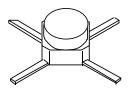


0.5-12 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-10236

Features


- Low Noise Figure: 0.8 dB Typical at 4 GHz
- **Low Bias:** V_{DS} = 2 V, I_{DS} = 20 mA
- **High Associated Gain:** 13.0 dB Typical at 4 GHz
- **High Output Power:** 20.0 dBm Typical P_{1dB} at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-And-Reel Packaging Option Available [1]

Description

The ATF-10236 is a high performance gallium arsenide Schottky-barriergate field effect transistor housed in a cost effective microstrip package. Its low noise figure makes this device appropriate for use in the first and second stages of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	0 0 0 0 0	= 2.0 GHz	dB		0.6	1.0
	_	= 4.0 GHz = 6.0 GHz	dB dB		0.8 1.0	1.0
G _A	Gain @ NF _O ; $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	= 2.0 GHz	dB		16.5	
	_	= 4.0 GHz	dB	12.0	13.0	
	f	= 6.0 GHz	dB		10.5	
P _{1 dB}	$\begin{array}{c} Power \ Output \ @ \ 1 \ dB \ Gain \ Compression \\ V_{DS} = 4 \ V, \ I_{DS} = 70 \ mA \end{array} \qquad f$	= 4.0 GHz	dBm		20.0	
G _{1 dB}	1 dB Compressed Gain: $V_{DS} = 4 \text{ V}$, $I_{DS} = 70 \text{ mA}$ f	= 4.0 GHz	dB		12.0	
g _m	Transconductance: $V_{DS} = 2 \text{ V}, V_{GS} = 0 \text{ V}$		mmho	80	140	
I _{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
V_{P}	Pinchoff Voltage: $V_{DS} = 2 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-3.0	-1.3	-0.8

Note:

1. Refer to PACKAGING section, "Tape-and-Reel Packaging for Surface Mount Semiconductors."

ATF-10236 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{DS}	Drain-Source Voltage	V	+5
V_{GS}	Gate-Source Voltage	V	-4
V_{GD}	Gate-Drain Voltage	V	-7
I _{DS}	Drain Current	mA	I_{DSS}
P _T	Power Dissipation [2,3]	mW	430
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature ^[4]	°C	175

Thermal Resistance:	$\theta_{\rm jc} = 350^{\circ} { m C/W}; T_{\rm CH} = 150^{\circ} { m C}$
Liquid Crystal Measurement:	1μm Spot Size ^[5]

Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size		
ATF-10236-TR1	1000	7"		
ATF-10236-STR	10	STRIP		

For more information, see "Tape and Reel Packaging for Semiconductor Devices."

ATF-10236 Noise Parameters: $V_{DS} = 2 \text{ V}, I_{DS} = 25 \text{ mA}$

Freq.	NFo	Γ	D /50	
GHz	dB	Mag	Ang	R _N /50
0.5	0.45	0.93	18	0.75
1.0	0.5	0.87	36	0.63
2.0	0.6	0.73	74	0.33
4.0	0.8	0.45	148	0.15
6.0	1.0	0.42	-137	0.12
8.0	1.3	0.49	-80	0.45

ATF-10236 Typical Performance, $T_A = 25^{\circ}C$

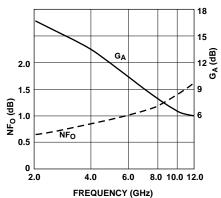


Figure 1. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=2\ V,\ I_{DS}=25\ mA,\ T_A=25^{\circ}C.$

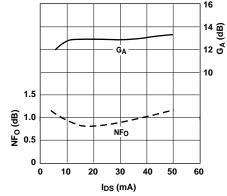
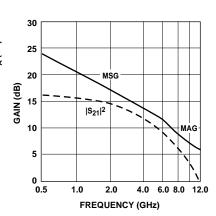
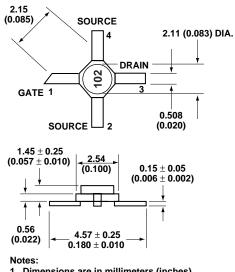


Figure 2. Optimum Noise Figure and Associated Gain vs. I_{DS} . $V_{DS} = 2 \text{ V}, \text{ f} = 4.0 \text{ GHz}.$

Notes:

- Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25^{\circ}C.$
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.




Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $\rm V_{DS}=2~V,~I_{DS}=25~mA.$

 $\textbf{Typical Scattering Parameters,} \ \ \text{Common Source,} \ \ Z_O = 50 \ \Omega, \ T_A = 25^{\circ}\text{C}, \ V_{DS} = 2 \ V, \ I_{DS} = 25 \ mA$

Freq.	S ₁₁			S ₂₁		S_{12}			S ₂₂	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.97	-20	15.1	5.68	162	-32.8	.023	76	.47	-11
1.0	.93	-41	14.9	5.58	143	-26.0	.050	71	.45	-23
2.0	.77	-81	13.6	4.76	107	-21.3	.086	51	.36	-38
3.0	.59	-114	12.2	4.06	80	-18.4	.120	35	.30	-51
4.0	.48	-148	10.9	3.51	52	-16.5	.149	18	.23	-67
5.0	.46	166	9.6	3.03	26	-15.3	.172	3	.10	-67
6.0	.53	125	8.5	2.65	1	-14.5	.189	-14	.09	48
7.0	.62	96	6.9	2.22	-20	-14.4	.191	-28	.24	55
8.0	.71	73	4.9	1.75	-39	-14.5	.189	-41	.37	51
9.0	.75	54	3.3	1.47	-55	-14.7	.184	-46	.46	42
10.0	.78	39	2.1	1.28	-72	-14.9	.180	-59	.51	34
11.0	.82	26	0.3	1.04	-86	-14.9	.179	-71	.54	26
12.0	.84	12	-0.5	0.95	-101	-15.0	.177	-82	.54	17

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

- 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13

